These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 17615961)

  • 81. Phosphorus availability for beneficial use in biosolids products.
    Hogan F; McHugh M; Morton S
    Environ Technol; 2001 Nov; 22(11):1347-53. PubMed ID: 11804356
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Electrolysis-enhanced ecological floating bed and its factors influencing nitrogen and phosphorus removal in simulated hyper-eutrophic water.
    Yan C; Ma T; Wang M; Yang S; Yang L; Gao Y
    Environ Sci Pollut Res Int; 2021 May; 28(18):22832-22842. PubMed ID: 33432406
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Enhanced degradation of azo dye alizarin yellow R in a combined process of iron-carbon microelectrolysis and aerobic bio-contact oxidation.
    Liang B; Yao Q; Cheng H; Gao S; Kong F; Cui D; Guo Y; Ren N; Lee DJ; Wang A
    Environ Sci Pollut Res Int; 2012 Jun; 19(5):1385-91. PubMed ID: 22743988
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Cost-effective wastewater treatment in a continuous manner by a novel bio-photoelectrolysis cell (BPE) system.
    Sun H; Zhao W; Mao X; Ren Y; Wu T; Chen F
    Bioresour Technol; 2019 Feb; 273():297-304. PubMed ID: 30448681
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Electrochemically driven extraction and recovery of ammonia from human urine.
    Luther AK; Desloover J; Fennell DE; Rabaey K
    Water Res; 2015 Dec; 87():367-77. PubMed ID: 26453942
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Electrolytic treatment of wastewater containing n-phenyl-n'-1,3-dimethylbutyl-p-phenylenediamine.
    Inazaki TH; Moraes PB; Pião AC; Bidoia ED
    Environ Technol; 2008 May; 29(5):553-8. PubMed ID: 18661739
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Differential control of anode/cathode potentials of paired electrolysis for simultaneous removal of chemical oxygen demand and total nitrogen.
    Yao J; Pan B; Shen R; Yuan T; Wang J
    Sci Total Environ; 2019 Oct; 687():198-205. PubMed ID: 31207510
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Phosphorus recovery from aqueous solution via a microbial electrolysis phosphorus-recovery cell.
    Wang Z; Zhang J; Hu X; Bian R; Xv Y; Deng R; Zhang Z; Xiang P; Xia S
    Chemosphere; 2020 Oct; 257():127283. PubMed ID: 32531492
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Optimization of the cathode material for nitrate removal by a paired electrolysis process.
    Reyter D; Bélanger D; Roué L
    J Hazard Mater; 2011 Aug; 192(2):507-13. PubMed ID: 21703761
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A new anode material for oxygen evolution in molten oxide electrolysis.
    Allanore A; Yin L; Sadoway DR
    Nature; 2013 May; 497(7449):353-6. PubMed ID: 23657254
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Study on Fe-C-Al three-phase micro-electrolysis treatment of low concentration phosphorus wastewater.
    Hu B; Qi Q; Li L; Huan Y; Liu Z; Liu X
    Water Sci Technol; 2022 Nov; 86(10):2581-2592. PubMed ID: 36450674
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Phosphonate removal from discharged circulating cooling water using iron-carbon micro-electrolysis.
    Zhou Z; Qiao W; Lin Y; Shen X; Hu D; Zhang J; Jiang LM; Wang L
    Water Sci Technol; 2014; 70(3):524-32. PubMed ID: 25098884
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Sustainable phosphorus recovery from wastewater and fertilizer production in microbial electrolysis cells using the biochar-based cathode.
    Ji X; Liu X; Yang W; Xu T; Wang X; Zhang X; Wang L; Mao X; Wang X
    Sci Total Environ; 2022 Feb; 807(Pt 2):150881. PubMed ID: 34627919
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Preparation of a New Iron-Carbon-Loaded Constructed Wetland Substrate and Enhanced Phosphorus Removal Performance.
    Zhao J; Gao J; Liu J
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33114072
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Understanding nitrogen recovery from wastewater with a high nitrogen concentration using microbial electrolysis cells.
    San-Martín MI; Mateos R; Escapa A; Morán A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(5):472-477. PubMed ID: 30676914
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Study on the experimental performance by electrolysis-integrated ecological floating bed for nitrogen and phosphorus removal in eutrophic water.
    Yan C; Wang M; Ma T; Yang S; Kong M; Shen J; Yang L; Gao Y
    Sci Rep; 2020 May; 10(1):7619. PubMed ID: 32376920
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Laboratory-scale trials of electrolytic treatment on industrial wastewaters: microbiological aspects.
    Zanardini E; Valle A; Gigliotti C; Papagno G; Ranalli G; Sorlini C
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002 Sep; 37(8):1463-81. PubMed ID: 12369639
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Influences of electrode distance and electrolysis time on phosphorus precipitation and composition during electrolysis of anaerobic digestion effluent.
    Takabe Y; Fujiyama M; Yamasaki Y; Masuda T
    Sci Total Environ; 2022 Jan; 803():150114. PubMed ID: 34525711
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Electrochemical Ammonia Recovery from Source-Separated Urine for Microbial Protein Production.
    Christiaens MER; Gildemyn S; Matassa S; Ysebaert T; De Vrieze J; Rabaey K
    Environ Sci Technol; 2017 Nov; 51(22):13143-13150. PubMed ID: 29112388
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Nitrogen removal from wastewater through microbial electrolysis cells and cation exchange membrane.
    Haddadi S; Nabi-Bidhendi G; Mehrdadi N
    J Environ Health Sci Eng; 2014 Feb; 12(1):48. PubMed ID: 24533446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.