BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 17616169)

  • 1. Temperature gradient focusing with field-amplified continuous sample injection for dual-stage analyte enrichment and separation.
    Munson MS; Danger G; Shackman JG; Ross D
    Anal Chem; 2007 Aug; 79(16):6201-7. PubMed ID: 17616169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gradient elution isotachophoresis for enrichment and separation of biomolecules.
    Shackman JG; Ross D
    Anal Chem; 2007 Sep; 79(17):6641-9. PubMed ID: 17676924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite sample effect in temperature gradient focusing.
    Lin H; Shackman JG; Ross D
    Lab Chip; 2008 Jun; 8(6):969-78. PubMed ID: 18497919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of aptamer-based affinity assays using temperature gradient focusing: minimization of the limit of detection.
    Munson MS; Meacham JM; Ross D; Locascio LE
    Electrophoresis; 2008 Aug; 29(16):3456-65. PubMed ID: 18646283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous concentration and separation of enantiomers with chiral temperature gradient focusing.
    Balss KM; Vreeland WN; Phinney KW; Ross D
    Anal Chem; 2004 Dec; 76(24):7243-9. PubMed ID: 15595865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gradient elution moving boundary electrophoresis with field-amplified continuous sample injection.
    Sikorsky AA; Fourkas JT; Ross D
    Anal Chem; 2014 Apr; 86(7):3625-32. PubMed ID: 24576193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sample stacking in CZE using dynamic thermal junctions I. Analytes with low dpKa/dT crossing a single thermally induced pH junction in a BGE with high dpH/dT.
    Mandaji M; Rübensam G; Hoff RB; Hillebrand S; Carrilho E; Kist TL
    Electrophoresis; 2009 May; 30(9):1501-9. PubMed ID: 19350541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Centrifuge microextraction coupled with on-line back-extraction field-amplified sample injection method for the determination of trace ephedrine derivatives in the urine and serum.
    Fang H; Zeng Z; Liu L
    Anal Chem; 2006 Sep; 78(17):6043-9. PubMed ID: 16944882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field gradient electrophoresis.
    Warnick KF; Francom SJ; Humble PH; Kelly RT; Woolley AT; Lee ML; Tolley HD
    Electrophoresis; 2005 Jan; 26(2):405-14. PubMed ID: 15657888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micelle stacking in micellar electrokinetic chromatography.
    Giordano BC; Newman CI; Federowicz PM; Collins GE; Burgi DS
    Anal Chem; 2007 Aug; 79(16):6287-94. PubMed ID: 17636879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative temperature gradient focusing performed using background electrolytes at various pH values.
    Shackman JG; Munson MS; Kan CW; Ross D
    Electrophoresis; 2006 Sep; 27(17):3420-7. PubMed ID: 16944457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thousandfold signal increase using field-amplified sample stacking for on-chip electrophoresis.
    Jung B; Bharadwaj R; Santiago JG
    Electrophoresis; 2003 Oct; 24(19-20):3476-83. PubMed ID: 14595694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic optimization of exhaustive electrokinetic injection combined with micellar sweeping in capillary electrophoresis.
    Fang N; Meng P; Zhang H; Sun Y; Chen DD
    Analyst; 2007 Feb; 132(2):127-34. PubMed ID: 17260072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion as major source of band broadening in field-amplified sample stacking under negligible electroosmotic flow velocity conditions.
    Huhn C; Pyell U
    J Chromatogr A; 2010 Jun; 1217(26):4476-86. PubMed ID: 20452606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Field-amplified sample stacking in capillary electrophoresis for on-column concentration of alkaloids in Sophora flavescens Ait.
    Liu S; Li Q; Chen X; Hu Z
    Electrophoresis; 2002 Sep; 23(19):3392-7. PubMed ID: 12373768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field-amplified sample stacking for the detection of chemical warfare agent degradation products in low-conductivity matrices by capillary electrophoresis-mass spectrometry.
    Lagarrigue M; Bossée A; Bégos A; Delaunay N; Varenne A; Gareil P; Bellier B
    J Chromatogr A; 2008 Jan; 1178(1-2):239-47. PubMed ID: 18068179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a temperature gradient focusing method for in situ extraterrestrial biomarker analysis.
    Danger G; Ross D
    Electrophoresis; 2008 Aug; 29(15):3107-14. PubMed ID: 18654978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of liquid conductivity differences on multi-component sample injection, pumping and stacking in microfluidic chips.
    Sinton D; Ren L; Xuan X; Li D
    Lab Chip; 2003 Aug; 3(3):173-9. PubMed ID: 15100770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sample stacking in CZE using dynamic thermal junctions II: analytes with high dpKa/dT crossing a single thermal junction in a BGE with low dpH/dT.
    Mandaji M; Rübensam G; Hoff RB; Hillebrand S; Carrilho E; Kist TL
    Electrophoresis; 2009 May; 30(9):1510-5. PubMed ID: 19350542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neutral analyte focusing by micelle collapse in micellar electrokinetic chromatography.
    Quirino JP
    J Chromatogr A; 2008 Dec; 1214(1-2):171-7. PubMed ID: 18990396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.