BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 17616173)

  • 1. Molecular dynamics simulations of matrix metalloproteinase 2: role of the structural metal ions.
    Díaz N; Suarez D
    Biochemistry; 2007 Aug; 46(31):8943-52. PubMed ID: 17616173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulations of the active matrix metalloproteinase-2: positioning of the N-terminal fragment and binding of a small peptide substrate.
    Díaz N; Suárez D
    Proteins; 2008 Jul; 72(1):50-61. PubMed ID: 18186480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum chemical study on the coordination environment of the catalytic zinc ion in matrix metalloproteinases.
    Díaz N; Suarez D; Sordo TL
    J Phys Chem B; 2006 Nov; 110(47):24222-30. PubMed ID: 17125395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordination number of zinc ions in the phosphotriesterase active site by molecular dynamics and quantum mechanics.
    Koca J; Zhan CG; Rittenhouse RC; Ornstein RL
    J Comput Chem; 2003 Feb; 24(3):368-78. PubMed ID: 12548728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Zn2+ on DNA recognition and stability of the p53 DNA-binding domain.
    Duan J; Nilsson L
    Biochemistry; 2006 Jun; 45(24):7483-92. PubMed ID: 16768444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide hydrolysis catalyzed by matrix metalloproteinase 2: a computational study.
    Díaz N; Suárez D
    J Phys Chem B; 2008 Jul; 112(28):8412-24. PubMed ID: 18570467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate binding and catalytic mechanism in phospholipase C from Bacillus cereus: a molecular mechanics and molecular dynamics study.
    da Graça Thrige D; Buur JR; Jørgensen FS
    Biopolymers; 1997 Sep; 42(3):319-36. PubMed ID: 9279125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apolactoferrin inhibits the catalytic domain of matrix metalloproteinase-2 by zinc chelation.
    Newsome AL; Johnson JP; Seipelt RL; Thompson MW
    Biochem Cell Biol; 2007 Oct; 85(5):563-72. PubMed ID: 17901898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From the X-ray compact structure to the elongated form of the full-length MMP-2 enzyme in solution: a molecular dynamics study.
    Díaz N; Suárez D; Valdés H
    J Am Chem Soc; 2008 Oct; 130(43):14070-1. PubMed ID: 18834122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of human macrophage elastase (MMP-12) in complex with a hydroxamic acid inhibitor.
    Nar H; Werle K; Bauer MM; Dollinger H; Jung B
    J Mol Biol; 2001 Sep; 312(4):743-51. PubMed ID: 11575929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-function relationship of inhibitory Smads: Structural flexibility contributes to functional divergence.
    Hariharan R; Pillai MR
    Proteins; 2008 Jun; 71(4):1853-62. PubMed ID: 18175316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular structures and dynamics of the stepwise activation mechanism of a matrix metalloproteinase zymogen: challenging the cysteine switch dogma.
    Rosenblum G; Meroueh S; Toth M; Fisher JF; Fridman R; Mobashery S; Sagi I
    J Am Chem Soc; 2007 Nov; 129(44):13566-74. PubMed ID: 17929919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A molecular basis for the selectivity of thiadiazole urea inhibitors with stromelysin-1 and gelatinase-A from generalized born molecular dynamics simulations.
    Rizzo RC; Toba S; Kuntz ID
    J Med Chem; 2004 Jun; 47(12):3065-74. PubMed ID: 15163188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of histidine-85 in the catalytic mechanism of thymidine phosphorylase as assessed by targeted molecular dynamics simulations and quantum mechanical calculations.
    Mendieta J; Martín-Santamaría S; Priego EM; Balzarini J; Camarasa MJ; Pérez-Pérez MJ; Gago F
    Biochemistry; 2004 Jan; 43(2):405-14. PubMed ID: 14717594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-Hydroxyurea as zinc binding group in matrix metalloproteinase inhibition: mode of binding in a complex with MMP-8.
    Campestre C; Agamennone M; Tortorella P; Preziuso S; Biasone A; Gavuzzo E; Pochetti G; Mazza F; Hiller O; Tschesche H; Consalvi V; Gallina C
    Bioorg Med Chem Lett; 2006 Jan; 16(1):20-4. PubMed ID: 16242329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding preferences of hydroxamate inhibitors of the matrix metalloproteinase human fibroblast collagenase.
    Toba S; Damodaran KV; Merz KM
    J Med Chem; 1999 Apr; 42(7):1225-34. PubMed ID: 10197966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical models of catalytic domains of protein phosphatases 1 and 2A with Zn2+ and Mn2+ metal dications and putative bioligands in their catalytic centers.
    Woźniak-Celmer E; Ołdziej S; Ciarkowski J
    Acta Biochim Pol; 2001; 48(1):35-52. PubMed ID: 11440182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The reaction mechanism of paraoxon hydrolysis by phosphotriesterase from combined QM/MM simulations.
    Wong KY; Gao J
    Biochemistry; 2007 Nov; 46(46):13352-69. PubMed ID: 17966992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulation exploration of cooperative migration mechanism of calcium ions in sarcoplasmic reticulum Ca2+-ATPase.
    Huang Y; Li H; Bu Y
    J Comput Chem; 2009 Oct; 30(13):2136-45. PubMed ID: 19242958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Future challenges facing the development of specific active-site-directed synthetic inhibitors of MMPs.
    Cuniasse P; Devel L; Makaritis A; Beau F; Georgiadis D; Matziari M; Yiotakis A; Dive V
    Biochimie; 2005; 87(3-4):393-402. PubMed ID: 15781327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.