BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 17616173)

  • 21. Chemically modified tetracyclines as inhibitors of MMP-2 matrix metalloproteinase: a molecular and structural study.
    Marcial BL; Sousa SF; Barbosa IL; Dos Santos HF; Ramos MJ
    J Phys Chem B; 2012 Nov; 116(46):13644-54. PubMed ID: 23121406
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structure of the stromelysin-3 (MMP-11) catalytic domain complexed with a phosphinic inhibitor mimicking the transition-state.
    Gall AL; Ruff M; Kannan R; Cuniasse P; Yiotakis A; Dive V; Rio MC; Basset P; Moras D
    J Mol Biol; 2001 Mar; 307(2):577-86. PubMed ID: 11254383
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A combined experimental and theoretical study of divalent metal ion selectivity and function in proteins: application to E. coli ribonuclease H1.
    Babu CS; Dudev T; Casareno R; Cowan JA; Lim C
    J Am Chem Soc; 2003 Aug; 125(31):9318-28. PubMed ID: 12889961
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Roles of the propeptide and metal ions in the folding and stability of the catalytic domain of stromelysin (matrix metalloproteinase 3).
    Wetmore DR; Hardman KD
    Biochemistry; 1996 May; 35(21):6549-58. PubMed ID: 8639603
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural differences of matrix metalloproteinases. Homology modeling and energy minimization of enzyme-substrate complexes.
    Terp GE; Christensen IT; Jørgensen FS
    J Biomol Struct Dyn; 2000 Jun; 17(6):933-46. PubMed ID: 10949161
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic and binding effects in peptide substrate selectivity of matrix metalloproteinase-2: Molecular dynamics and QM/MM calculations.
    Díaz N; Suárez D; Suárez E
    Proteins; 2010 Jan; 78(1):1-11. PubMed ID: 19585658
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A minimalist chemical model of matrix metalloproteinases--can small peptides mimic the more rigid metal binding sites of proteins?
    Árus D; Nagy NV; Dancs Á; Jancsó A; Berkecz R; Gajda T
    J Inorg Biochem; 2013 Sep; 126():61-9. PubMed ID: 23787141
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NMR structure of varkud satellite ribozyme stem-loop V in the presence of magnesium ions and localization of metal-binding sites.
    Campbell DO; Bouchard P; Desjardins G; Legault P
    Biochemistry; 2006 Sep; 45(35):10591-605. PubMed ID: 16939211
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metal ion substitution in the catalytic site greatly affects the binding of sulfhydryl-containing compounds to leucyl aminopeptidase.
    Cappiello M; Alterio V; Amodeo P; Del Corso A; Scaloni A; Pedone C; Moschini R; De Donatis GM; De Simone G; Mura U
    Biochemistry; 2006 Mar; 45(10):3226-34. PubMed ID: 16519517
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The conformational plasticity of calmodulin upon calcium complexation gives a model of its interaction with the oedema factor of Bacillus anthracis.
    Laine E; Yoneda JD; Blondel A; Malliavin TE
    Proteins; 2008 Jun; 71(4):1813-29. PubMed ID: 18175311
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of Ca2+ interactions with matrix metallopeptidase-12: implications for matrix metallopeptidase regulation.
    Gossas T; Danielson UH
    Biochem J; 2006 Sep; 398(3):393-8. PubMed ID: 16737445
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pronounced diversity in electronic and chemical properties between the catalytic zinc sites of tumor necrosis factor-alpha-converting enzyme and matrix metalloproteinases despite their high structural similarity.
    Solomon A; Rosenblum G; Gonzales PE; Leonard JD; Mobashery S; Milla ME; Sagi I
    J Biol Chem; 2004 Jul; 279(30):31646-54. PubMed ID: 15102849
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insights into the phosphoryl-transfer mechanism of cAMP-dependent protein kinase from quantum chemical calculations and molecular dynamics simulations.
    Díaz N; Field MJ
    J Am Chem Soc; 2004 Jan; 126(2):529-42. PubMed ID: 14719950
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fibronectin type II (FnII)-like modules regulate gelatinase A activity.
    Hornebeck W; Bellon G; Emonard H
    Pathol Biol (Paris); 2005 Sep; 53(7):405-10. PubMed ID: 16085117
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular dynamics simulations of the dinuclear zinc-beta-lactamase from Bacteroides fragilis complexed with imipenem.
    Suárez D; Díaz N; Merz KM
    J Comput Chem; 2002 Dec; 23(16):1587-600. PubMed ID: 12395427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In silico study of MMP inhibition.
    Rouffet M; Denhez C; Bourguet E; Bohr F; Guillaume D
    Org Biomol Chem; 2009 Sep; 7(18):3817-25. PubMed ID: 19707688
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extensive simulations of the full-length matrix metalloproteinase-2 enzyme in a prereactive complex with a collagen triple-helical peptide.
    Díaz N; Suárez D
    Biochemistry; 2015 Feb; 54(5):1243-58. PubMed ID: 25600631
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unraveling the molecular structure of the catalytic domain of matrix metalloproteinase-2 in complex with a triple-helical peptide by means of molecular dynamics simulations.
    Díaz N; Suárez D; Valdés H
    Biochemistry; 2013 Nov; 52(47):8556-69. PubMed ID: 24164447
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Binding of calcium and other metal ions to the EF-hand loops of calmodulin studied by quantum chemical calculations and molecular dynamics simulations.
    Lepsík M; Field MJ
    J Phys Chem B; 2007 Aug; 111(33):10012-22. PubMed ID: 17661504
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantum chemical calculations of the NHA bound nitric oxide synthase active site: O2 binding and implications for the catalytic mechanism.
    Cho KB; Gauld JW
    J Am Chem Soc; 2004 Aug; 126(33):10267-70. PubMed ID: 15315438
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.