BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

702 related articles for article (PubMed ID: 17616174)

  • 1. S-adenosyl-L-methionine-dependent methyl transfer: observable precatalytic intermediates during DNA cytosine methylation.
    Youngblood B; Shieh FK; Buller F; Bullock T; Reich NO
    Biochemistry; 2007 Jul; 46(30):8766-75. PubMed ID: 17616174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active site dynamics of the HhaI methyltransferase: insights from computer simulation.
    Lau EY; Bruice TC
    J Mol Biol; 1999 Oct; 293(1):9-18. PubMed ID: 10512711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing a rate-limiting step by mutational perturbation of AdoMet binding in the HhaI methyltransferase.
    Merkiene E; Klimasauskas S
    Nucleic Acids Res; 2005; 33(1):307-15. PubMed ID: 15653631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of inhibition of DNA (cytosine C5)-methyltransferases by oligodeoxyribonucleotides containing 5,6-dihydro-5-azacytosine.
    Sheikhnejad G; Brank A; Christman JK; Goddard A; Alvarez E; Ford H; Marquez VE; Marasco CJ; Sufrin JR; O'gara M; Cheng X
    J Mol Biol; 1999 Feb; 285(5):2021-34. PubMed ID: 9925782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanism of target base attack in DNA cytosine carbon 5 methylation.
    Svedruzić ZM; Reich NO
    Biochemistry; 2004 Sep; 43(36):11460-73. PubMed ID: 15350132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AdoMet-dependent methyl-transfer: Glu119 is essential for DNA C5-cytosine methyltransferase M.HhaI.
    Shieh FK; Reich NO
    J Mol Biol; 2007 Nov; 373(5):1157-68. PubMed ID: 17897676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms for auto-inhibition and forced product release in glycine N-methyltransferase: crystal structures of wild-type, mutant R175K and S-adenosylhomocysteine-bound R175K enzymes.
    Huang Y; Komoto J; Konishi K; Takata Y; Ogawa H; Gomi T; Fujioka M; Takusagawa F
    J Mol Biol; 2000 Apr; 298(1):149-62. PubMed ID: 10756111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of Arg165 towards base flipping, base stabilization and catalysis in M.HhaI.
    Shieh FK; Youngblood B; Reich NO
    J Mol Biol; 2006 Sep; 362(3):516-27. PubMed ID: 16926025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of DNA methylation: the double role of DNA as a substrate and as a cofactor.
    Zangi R; Arrieta A; Cossío FP
    J Mol Biol; 2010 Jul; 400(3):632-44. PubMed ID: 20471982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered extrahelical base destabilization enhances sequence discrimination of DNA methyltransferase M.HhaI.
    Youngblood B; Shieh FK; De Los Rios S; Perona JJ; Reich NO
    J Mol Biol; 2006 Sep; 362(2):334-46. PubMed ID: 16919299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A structural basis for the preferential binding of hemimethylated DNA by HhaI DNA methyltransferase.
    O'Gara M; Roberts RJ; Cheng X
    J Mol Biol; 1996 Nov; 263(4):597-606. PubMed ID: 8918941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA cytosine C5 methyltransferase Dnmt1: catalysis-dependent release of allosteric inhibition.
    Svedruzić ZM; Reich NO
    Biochemistry; 2005 Jul; 44(27):9472-85. PubMed ID: 15996102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determinants of sequence-specific DNA methylation: target recognition and catalysis are coupled in M.HhaI.
    Youngblood B; Buller F; Reich NO
    Biochemistry; 2006 Dec; 45(51):15563-72. PubMed ID: 17176077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism of DNA cytosine-5 methylation. Kinetic and mutational dissection of Hhai methyltransferase.
    Vilkaitis G; Merkiene E; Serva S; Weinhold E; Klimasauskas S
    J Biol Chem; 2001 Jun; 276(24):20924-34. PubMed ID: 11283006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Universal catalytic domain structure of AdoMet-dependent methyltransferases.
    Schluckebier G; O'Gara M; Saenger W; Cheng X
    J Mol Biol; 1995 Mar; 247(1):16-20. PubMed ID: 7897657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The PvuII DNA (cytosine-N4)-methyltransferase comprises two trypsin-defined domains, each of which binds a molecule of S-adenosyl-L-methionine.
    Adams GM; Blumenthal RM
    Biochemistry; 1997 Jul; 36(27):8284-92. PubMed ID: 9204874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanism of adenosylmethionine-dependent activation of methionine synthase: a rapid kinetic analysis of intermediates in reductive methylation of Cob(II)alamin enzyme.
    Jarrett JT; Hoover DM; Ludwig ML; Matthews RG
    Biochemistry; 1998 Sep; 37(36):12649-58. PubMed ID: 9730838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of pvu II DNA-(cytosine N4) methyltransferase, an example of domain permutation and protein fold assignment.
    Gong W; O'Gara M; Blumenthal RM; Cheng X
    Nucleic Acids Res; 1997 Jul; 25(14):2702-15. PubMed ID: 9207015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determinants of cofactor binding to DNA methyltransferases: insights from a systematic series of structural variants of S-adenosylhomocysteine.
    Cohen HM; Griffiths AD; Tawfik DS; Loakes D
    Org Biomol Chem; 2005 Jan; 3(1):152-61. PubMed ID: 15602611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the N6-adenine DNA methyltransferase M.TaqI in complex with DNA and a cofactor analog.
    Goedecke K; Pignot M; Goody RS; Scheidig AJ; Weinhold E
    Nat Struct Biol; 2001 Feb; 8(2):121-5. PubMed ID: 11175899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.