These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 17616293)
1. Ontogeny of cocaine- and amphetamine-regulated transcript (CART) peptide and calbindin immunoreactivity in granule cells of the dentate gyrus in the rat. Abrahám H; Orsi G; Seress L Int J Dev Neurosci; 2007 Aug; 25(5):265-74. PubMed ID: 17616293 [TBL] [Abstract][Full Text] [Related]
2. Ontogeny of calbindin immunoreactivity in the human hippocampal formation with a special emphasis on granule cells of the dentate gyrus. Abrahám H; Veszprémi B; Kravják A; Kovács K; Gömöri E; Seress L Int J Dev Neurosci; 2009 Apr; 27(2):115-27. PubMed ID: 19150647 [TBL] [Abstract][Full Text] [Related]
3. Cocaine- and amphetamine-regulated transcript peptide (CART) is a selective marker of rat granule cells and of human mossy cells in the hippocampal dentate gyrus. Seress L; Abrahám H; Dóczi T; Lázár G; Kozicz T Neuroscience; 2004; 125(1):13-24. PubMed ID: 15051141 [TBL] [Abstract][Full Text] [Related]
4. Mossy cells and different subpopulations of pyramidal neurons are immunoreactive for cocaine- and amphetamine-regulated transcript peptide in the hippocampal formation of non-human primates and tree shrew (Tupaia belangeri). Abrahám H; Czéh B; Fuchs E; Seress L Neuroscience; 2005; 136(1):231-40. PubMed ID: 16181735 [TBL] [Abstract][Full Text] [Related]
5. Calretinin expression in hilar mossy cells of the hippocampal dentate gyrus of nonhuman primates and humans. Seress L; Abrahám H; Czéh B; Fuchs E; Léránth C Hippocampus; 2008; 18(4):425-34. PubMed ID: 18189312 [TBL] [Abstract][Full Text] [Related]
6. Distribution of calretinin immunoreactivity in the mouse dentate gyrus: II. Mossy cells, with special reference to their dorsoventral difference in calretinin immunoreactivity. Fujise N; Liu Y; Hori N; Kosaka T Neuroscience; 1998 Jan; 82(1):181-200. PubMed ID: 9483514 [TBL] [Abstract][Full Text] [Related]
7. Poor correlation between delayed neuronal death induced by transient forebrain ischemia, and immunoreactivity for parvalbumin and calbindin D-28k in developing gerbil hippocampus. Tortosa A; Ferrer I Acta Neuropathol; 1994; 88(1):67-74. PubMed ID: 7941974 [TBL] [Abstract][Full Text] [Related]
8. Loss of Calbindin-D28K immunoreactivity from dentate granule cells in human temporal lobe epilepsy. Maglóczky Z; Halász P; Vajda J; Czirják S; Freund TF Neuroscience; 1997 Jan; 76(2):377-85. PubMed ID: 9015323 [TBL] [Abstract][Full Text] [Related]
9. Connections of the hippocampal formation in humans: I. The mossy fiber pathway. Lim C; Blume HW; Madsen JR; Saper CB J Comp Neurol; 1997 Sep; 385(3):325-51. PubMed ID: 9300763 [TBL] [Abstract][Full Text] [Related]
10. Melatonin Influences Structural Plasticity in the Axons of Granule Cells in the Dentate Gyrus of Balb/C Mice. Ramírez-Rodríguez GB; Olvera-Hernández S; Vega-Rivera NM; Ortiz-López L Int J Mol Sci; 2018 Dec; 20(1):. PubMed ID: 30585191 [TBL] [Abstract][Full Text] [Related]
11. Distribution, ultrastructure, and connectivity of calretinin-immunoreactive mossy cells of the mouse dentate gyrus. Blasco-Ibáñez JM; Freund TF Hippocampus; 1997; 7(3):307-20. PubMed ID: 9228528 [TBL] [Abstract][Full Text] [Related]
12. Expression of calretinin in diverse neuronal populations during development of rat hippocampus. Jiang M; Swann JW Neuroscience; 1997 Dec; 81(4):1137-54. PubMed ID: 9330374 [TBL] [Abstract][Full Text] [Related]
13. Laminar organization of the mouse dentate gyrus: insights from BETA2/Neuro D mutant mice. Del Turco D; Gebhardt C; Burbach GJ; Pleasure SJ; Lowenstein DH; Deller T J Comp Neurol; 2004 Sep; 477(1):81-95. PubMed ID: 15281081 [TBL] [Abstract][Full Text] [Related]
14. Calretinin immunoreactivity in the monkey hippocampal formation--I. Light and electron microscopic characteristics and co-localization with other calcium-binding proteins. Seress L; Nitsch R; Leranth C Neuroscience; 1993 Aug; 55(3):775-96. PubMed ID: 8413936 [TBL] [Abstract][Full Text] [Related]
15. Hilar mossy cells share developmental influences with dentate granule neurons. Li G; Berger O; Han SM; Paredes M; Wu NC; Pleasure SJ Dev Neurosci; 2008; 30(4):255-61. PubMed ID: 17960053 [TBL] [Abstract][Full Text] [Related]
16. Mossy cell axon synaptic contacts on ectopic granule cells that are born following pilocarpine-induced seizures. Pierce JP; Punsoni M; McCloskey DP; Scharfman HE Neurosci Lett; 2007 Jul; 422(2):136-40. PubMed ID: 17611032 [TBL] [Abstract][Full Text] [Related]
17. [Neurogenesis of dentate granule cells following kainic acid induced seizures in immature rats]. Wang YL; Sun RP; Lei GF; Wang JW; Guo SH Zhonghua Er Ke Za Zhi; 2004 Aug; 42(8):621-4. PubMed ID: 15347454 [TBL] [Abstract][Full Text] [Related]
18. Granule cells in the CA3 area. Szabadics J; Varga C; Brunner J; Chen K; Soltesz I J Neurosci; 2010 Jun; 30(24):8296-307. PubMed ID: 20554881 [TBL] [Abstract][Full Text] [Related]
19. Calbindin-D28k immunoreactivity and selective vulnerability to ischemia in the dentate gyrus of the developing rat. Goodman JH; Wasterlain CG; Massarweh WF; Dean E; Sollas AL; Sloviter RS Brain Res; 1993 Mar; 606(2):309-14. PubMed ID: 8490723 [TBL] [Abstract][Full Text] [Related]
20. Ultrastructural localization of neurotransmitter immunoreactivity in mossy cell axons and their synaptic targets in the rat dentate gyrus. Wenzel HJ; Buckmaster PS; Anderson NL; Wenzel ME; Schwartzkroin PA Hippocampus; 1997; 7(5):559-70. PubMed ID: 9347352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]