These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 17616426)

  • 1. A parametric numerical investigation on haemodynamics in distal coronary anastomoses.
    Xiong FL; Chong CK
    Med Eng Phys; 2008 Apr; 30(3):311-20. PubMed ID: 17616426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PIV-validated numerical modeling of pulsatile flows in distal coronary end-to-side anastomoses.
    Xiong FL; Chong CK
    J Biomech; 2007; 40(13):2872-81. PubMed ID: 17466995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of graft-host diameter ratio on the hemodynamics of CABG.
    Qiao A; Liu Y
    Biomed Mater Eng; 2006; 16(3):189-201. PubMed ID: 16518018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational model of blood flow in the aorto-coronary bypass graft.
    Sankaranarayanan M; Chua LP; Ghista DN; Tan YS
    Biomed Eng Online; 2005 Mar; 4():14. PubMed ID: 15745458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation.
    Younis HF; Kaazempur-Mofrad MR; Chan RC; Isasi AG; Hinton DP; Chau AH; Kim LA; Kamm RD
    Biomech Model Mechanobiol; 2004 Sep; 3(1):17-32. PubMed ID: 15300454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study on the compliance of a right coronary artery and its impact on wall shear stress.
    Zeng D; Boutsianis E; Ammann M; Boomsma K; Wildermuth S; Poulikakos D
    J Biomech Eng; 2008 Aug; 130(4):041014. PubMed ID: 18601456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical study on the pulsatile flow characteristics of proximal anastomotic models.
    Chua LP; Zhang JM; Yu SC; Ghista DN; Tan YS
    Proc Inst Mech Eng H; 2005 Sep; 219(5):361-79. PubMed ID: 16225153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Influences of graft diameter on the blood flow in 2-way bypassing surgery].
    Qiao A; Liu Y; Zhang S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):346-50, 377. PubMed ID: 18610620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel coronary artery bypass graft design of sequential anastomoses.
    Kabinejadian F; Chua LP; Ghista DN; Sankaranarayanan M; Tan YS
    Ann Biomed Eng; 2010 Oct; 38(10):3135-50. PubMed ID: 20496004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wall shear stresses in small and large two-way bypass grafts.
    Qiao A; Liu Y; Guo Z
    Med Eng Phys; 2006 Apr; 28(3):251-8. PubMed ID: 16029954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulation of wall shear stress and particle-based hemodynamic parameters in pre-cuffed and streamlined end-to-side anastomoses.
    Longest PW; Kleinstreuer C; Deanda A
    Ann Biomed Eng; 2005 Dec; 33(12):1752-66. PubMed ID: 16389524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of numerical simulation with PIV measurements for two anastomosis models.
    Zhang JM; Chua LP; Ghista DN; Zhou TM; Tan YS
    Med Eng Phys; 2008 Mar; 30(2):226-47. PubMed ID: 17466565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of angle on wall shear stresses in a LIMA to LAD anastomosis: numerical modelling of pulsatile flow.
    Freshwater IJ; Morsi YS; Lai T
    Proc Inst Mech Eng H; 2006 Oct; 220(7):743-57. PubMed ID: 17117764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow parameters in normal left coronary artery tree. Implication to atherogenesis.
    Soulis JV; Giannoglou GD; Parcharidis GE; Louridas GE
    Comput Biol Med; 2007 May; 37(5):628-36. PubMed ID: 16920094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses.
    Chen J; Lu XY; Wang W
    J Biomech; 2006; 39(11):1983-95. PubMed ID: 16055134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minimisation of the wall shear stress gradients in bypass grafts anastomoses using meshless CFD and genetic algorithms optimisation.
    El Zahab Z; Divo E; Kassab A
    Comput Methods Biomech Biomed Engin; 2010 Feb; 13(1):35-47. PubMed ID: 20166238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An S-type bypass can improve the hemodynamics in the bypassed arteries and suppress intimal hyperplasia along the host artery floor.
    Fan Y; Xu Z; Jiang W; Deng X; Wang K; Sun A
    J Biomech; 2008 Aug; 41(11):2498-505. PubMed ID: 18573497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wall shear stress gradient topography in the normal left coronary arterial tree: possible implications for atherogenesis.
    Farmakis TM; Soulis JV; Giannoglou GD; Zioupos GJ; Louridas GE
    Curr Med Res Opin; 2004 May; 20(5):587-96. PubMed ID: 15140324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Re-creation of a sinuslike graft expansion in Bentall procedure reduces stress at the coronary button anastomoses: A finite element study.
    Weltert L; De Paulis R; Scaffa R; Maselli D; Bellisario A; D'Alessandro S
    J Thorac Cardiovasc Surg; 2009 May; 137(5):1082-7. PubMed ID: 19379971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical modeling of simulated blood flow in idealized composite arterial coronary grafts: steady state simulations.
    Politis AK; Stavropoulos GP; Christolis MN; Panagopoulos FG; Vlachos NS; Markatos NC
    J Biomech; 2007; 40(5):1125-36. PubMed ID: 16828103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.