These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 17616518)

  • 1. Stb3 binds to ribosomal RNA processing element motifs that control transcriptional responses to growth in Saccharomyces cerevisiae.
    Liko D; Slattery MG; Heideman W
    J Biol Chem; 2007 Sep; 282(36):26623-8. PubMed ID: 17616518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stb3 plays a role in the glucose-induced transition from quiescence to growth in Saccharomyces cerevisiae.
    Liko D; Conway MK; Grunwald DS; Heideman W
    Genetics; 2010 Jul; 185(3):797-810. PubMed ID: 20385783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adjacent gene pairing plays a role in the coordinated expression of ribosome biogenesis genes MPP10 and YJR003C in Saccharomyces cerevisiae.
    Arnone JT; McAlear MA
    Eukaryot Cell; 2011 Jan; 10(1):43-53. PubMed ID: 21115740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of the YAP1, PDE2, and STB3 genes enhances the tolerance of yeast to oxidative stress induced by 7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine.
    Drobna E; Gazdag Z; Culakova H; Dzugasova V; Gbelska Y; Pesti M; Subik J
    FEMS Yeast Res; 2012 Dec; 12(8):958-68. PubMed ID: 22909133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidation of the role of Grr1p in glucose sensing by Saccharomyces cerevisiae through genome-wide transcription analysis.
    Westergaard SL; Bro C; Olsson L; Nielsen J
    FEMS Yeast Res; 2004 Dec; 5(3):193-204. PubMed ID: 15556081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamical remodeling of the transcriptome during short-term anaerobiosis in Saccharomyces cerevisiae: differential response and role of Msn2 and/or Msn4 and other factors in galactose and glucose media.
    Lai LC; Kosorukoff AL; Burke PV; Kwast KE
    Mol Cell Biol; 2005 May; 25(10):4075-91. PubMed ID: 15870279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative analyses of time-course gene expression profiles of the long-lived sch9Delta mutant.
    Ge H; Wei M; Fabrizio P; Hu J; Cheng C; Longo VD; Li LM
    Nucleic Acids Res; 2010 Jan; 38(1):143-58. PubMed ID: 19880387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of transcriptional and posttranslational regulation in a glucose signal transduction pathway in Saccharomyces cerevisiae.
    Kim JH; Brachet V; Moriya H; Johnston M
    Eukaryot Cell; 2006 Jan; 5(1):167-73. PubMed ID: 16400179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sfp1 plays a key role in yeast ribosome biogenesis.
    Fingerman I; Nagaraj V; Norris D; Vershon AK
    Eukaryot Cell; 2003 Oct; 2(5):1061-8. PubMed ID: 14555489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Molecular Titration System Coordinates Ribosomal Protein Gene Transcription with Ribosomal RNA Synthesis.
    Albert B; Knight B; Merwin J; Martin V; Ottoz D; Gloor Y; Bruzzone MJ; Rudner A; Shore D
    Mol Cell; 2016 Nov; 64(4):720-733. PubMed ID: 27818142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abf1 and other general regulatory factors control ribosome biogenesis gene expression in budding yeast.
    Bosio MC; Fermi B; Spagnoli G; Levati E; Rubbi L; Ferrari R; Pellegrini M; Dieci G
    Nucleic Acids Res; 2017 May; 45(8):4493-4506. PubMed ID: 28158860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The heme activator protein Hap1 represses transcription by a heme-independent mechanism in Saccharomyces cerevisiae.
    Hon T; Lee HC; Hu Z; Iyer VR; Zhang L
    Genetics; 2005 Mar; 169(3):1343-52. PubMed ID: 15654089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of low glycolytic activities in gcr1 and gcr2 mutants on the expression of other metabolic pathway genes in Saccharomyces cerevisiae.
    Sasaki H; Uemura H
    Yeast; 2005 Jan; 22(2):111-27. PubMed ID: 15645478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms coordinating ribosomal protein gene transcription in response to stress.
    Zencir S; Dilg D; Rueda MP; Shore D; Albert B
    Nucleic Acids Res; 2020 Nov; 48(20):11408-11420. PubMed ID: 33084907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth-regulated recruitment of the essential yeast ribosomal protein gene activator Ifh1.
    Schawalder SB; Kabani M; Howald I; Choudhury U; Werner M; Shore D
    Nature; 2004 Dec; 432(7020):1058-61. PubMed ID: 15616569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordinated regulation of growth genes in Saccharomyces cerevisiae.
    Slattery MG; Heideman W
    Cell Cycle; 2007 May; 6(10):1210-9. PubMed ID: 17495542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promoter architecture and transcriptional regulation of Abf1-dependent ribosomal protein genes in Saccharomyces cerevisiae.
    Fermi B; Bosio MC; Dieci G
    Nucleic Acids Res; 2016 Jul; 44(13):6113-26. PubMed ID: 27016735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional regulation of the one-carbon metabolism regulon in Saccharomyces cerevisiae by Bas1p.
    Subramanian M; Qiao WB; Khanam N; Wilkins O; Der SD; Lalich JD; Bognar AL
    Mol Microbiol; 2005 Jul; 57(1):53-69. PubMed ID: 15948949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interdependent recruitment of SAGA and Srb mediator by transcriptional activator Gcn4p.
    Qiu H; Hu C; Zhang F; Hwang GJ; Swanson MJ; Boonchird C; Hinnebusch AG
    Mol Cell Biol; 2005 May; 25(9):3461-74. PubMed ID: 15831453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulatory elements in the FBP1 promoter respond differently to glucose-dependent signals in Saccharomyces cerevisiae.
    Zaragoza O; Vincent O; Gancedo JM
    Biochem J; 2001 Oct; 359(Pt 1):193-201. PubMed ID: 11563983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.