These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 17616588)
1. RegA control of bacteriochlorophyll and carotenoid synthesis in Rhodobacter capsulatus. Willett J; Smart JL; Bauer CE J Bacteriol; 2007 Nov; 189(21):7765-73. PubMed ID: 17616588 [TBL] [Abstract][Full Text] [Related]
2. An overlap between operons involved in carotenoid and bacteriochlorophyll biosynthesis in Rhodobacter capsulatus. Young DA; Rudzik MB; Marrs BL FEMS Microbiol Lett; 1992 Aug; 74(2-3):213-8. PubMed ID: 1526454 [TBL] [Abstract][Full Text] [Related]
3. Regulation of carotenoid and bacteriochlorophyll biosynthesis genes and identification of an evolutionarily conserved gene required for bacteriochlorophyll accumulation. Armstrong GA; Cook DN; Ma D; Alberti M; Burke DH; Hearst JE J Gen Microbiol; 1993 May; 139(5):897-906. PubMed ID: 8336108 [TBL] [Abstract][Full Text] [Related]
4. CrtJ bound to distant binding sites interacts cooperatively to aerobically repress photopigment biosynthesis and light harvesting II gene expression in Rhodobacter capsulatus. Elsen S; Ponnampalam SN; Bauer CE J Biol Chem; 1998 Nov; 273(46):30762-9. PubMed ID: 9804853 [TBL] [Abstract][Full Text] [Related]
5. Mg-protoporphyrin IX monomethyl ester cyclase from Rhodobacter capsulatus: radical SAM-dependent synthesis of the isocyclic ring of bacteriochlorophylls. Wiesselmann M; Hebecker S; Borrero-de Acuña JM; Nimtz M; Bollivar D; Jänsch L; Moser J; Jahn D Biochem J; 2020 Dec; 477(23):4635-4654. PubMed ID: 33211085 [TBL] [Abstract][Full Text] [Related]
6. Characterization of an aerobic repressor that coordinately regulates bacteriochlorophyll, carotenoid, and light harvesting-II expression in Rhodobacter capsulatus. Ponnampalam SN; Buggy JJ; Bauer CE J Bacteriol; 1995 Jun; 177(11):2990-7. PubMed ID: 7768793 [TBL] [Abstract][Full Text] [Related]
7. Magnesium insertion by magnesium chelatase in the biosynthesis of zinc bacteriochlorophyll a in an aerobic acidophilic bacterium Acidiphilium rubrum. Masuda T; Inoue K; Masuda M; Nagayama M; Tamaki A; Ohta H; Shimada H; Takamiya K J Biol Chem; 1999 Nov; 274(47):33594-600. PubMed ID: 10559247 [TBL] [Abstract][Full Text] [Related]
8. DNA binding characteristics of CrtJ. A redox-responding repressor of bacteriochlorophyll, carotenoid, and light harvesting-II gene expression in Rhodobacter capsulatus. Ponnampalam SN; Bauer CE J Biol Chem; 1997 Jul; 272(29):18391-6. PubMed ID: 9218481 [TBL] [Abstract][Full Text] [Related]
9. Bacteriochlorophyll-dependent expression of genes for pigment-binding proteins in Rhodobacter capsulatus involves the RegB/RegA two-component system. Abada EM; Balzer A; Jäger A; Klug G Mol Genet Genomics; 2002 Apr; 267(2):202-9. PubMed ID: 11976963 [TBL] [Abstract][Full Text] [Related]
10. The RegB/RegA two-component regulatory system controls synthesis of photosynthesis and respiratory electron transfer components in Rhodobacter capsulatus. Swem LR; Elsen S; Bird TH; Swem DL; Koch HG; Myllykallio H; Daldal F; Bauer CE J Mol Biol; 2001 May; 309(1):121-38. PubMed ID: 11491283 [TBL] [Abstract][Full Text] [Related]
11. Genetic and biochemical characterization of carotenoid biosynthesis mutants of Rhodobacter capsulatus. Armstrong GA; Schmidt A; Sandmann G; Hearst JE J Biol Chem; 1990 May; 265(14):8329-38. PubMed ID: 2159477 [TBL] [Abstract][Full Text] [Related]
12. DNA binding characteristics of RegA. A constitutively active anaerobic activator of photosynthesis gene expression in Rhodobacter capsulatus. Du S; Bird TH; Bauer CE J Biol Chem; 1998 Jul; 273(29):18509-13. PubMed ID: 9660820 [TBL] [Abstract][Full Text] [Related]
13. Cloning and characterization of the chlorophyll biosynthesis gene chlM from Synechocystis PCC 6803 by complementation of a bacteriochlorophyll biosynthesis mutant of Rhodobacter capsulatus. Smith CA; Suzuki JY; Bauer CE Plant Mol Biol; 1996 Mar; 30(6):1307-14. PubMed ID: 8704138 [TBL] [Abstract][Full Text] [Related]
14. Conserved enzymes mediate the early reactions of carotenoid biosynthesis in nonphotosynthetic and photosynthetic prokaryotes. Armstrong GA; Alberti M; Hearst JE Proc Natl Acad Sci U S A; 1990 Dec; 87(24):9975-9. PubMed ID: 2263648 [TBL] [Abstract][Full Text] [Related]
15. Structural and functional analyses of photosynthetic regulatory genes regA and regB from Rhodovulum sulfidophilum, Roseobacter denitrificans, and Rhodobacter capsulatus. Masuda S; Matsumoto Y; Nagashima KV; Shimada K; Inoue K; Bauer CE; Matsuura K J Bacteriol; 1999 Jul; 181(14):4205-15. PubMed ID: 10400577 [TBL] [Abstract][Full Text] [Related]
16. Regulation of hem gene expression in Rhodobacter capsulatus by redox and photosystem regulators RegA, CrtJ, FnrL, and AerR. Smart JL; Willett JW; Bauer CE J Mol Biol; 2004 Sep; 342(4):1171-86. PubMed ID: 15351643 [TBL] [Abstract][Full Text] [Related]
17. Bacterial regulatory networks include direct contact of response regulator proteins: interaction of RegA and NtrX in Rhodobacter capsulatus. Gregor J; Zeller T; Balzer A; Haberzettl K; Klug G J Mol Microbiol Biotechnol; 2007; 13(1-3):126-39. PubMed ID: 17693720 [TBL] [Abstract][Full Text] [Related]
18. Multiple regulators and their interactions in vivo and in vitro with the cbb regulons of Rhodobacter capsulatus. Vichivanives P; Bird TH; Bauer CE; Robert Tabita F J Mol Biol; 2000 Jul; 300(5):1079-99. PubMed ID: 10903856 [TBL] [Abstract][Full Text] [Related]
19. In vitro activation and repression of photosynthesis gene transcription in Rhodobacter capsulatus. Bowman WC; Du S; Bauer CE; Kranz RG Mol Microbiol; 1999 Jul; 33(2):429-37. PubMed ID: 10411758 [TBL] [Abstract][Full Text] [Related]
20. Inactivation of Mg chelatase during transition from anaerobic to aerobic growth in Rhodobacter capsulatus. Willows RD; Lake V; Roberts TH; Beale SI J Bacteriol; 2003 Jun; 185(11):3249-58. PubMed ID: 12754222 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]