These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 17616589)
1. The mutT defect does not elevate chromosomal fragmentation in Escherichia coli because of the surprisingly low levels of MutM/MutY-recognized DNA modifications. Rotman E; Kuzminov A J Bacteriol; 2007 Oct; 189(19):6976-88. PubMed ID: 17616589 [TBL] [Abstract][Full Text] [Related]
2. Chromosomal fragmentation in dUTPase-deficient mutants of Escherichia coli and its recombinational repair. Kouzminova EA; Kuzminov A Mol Microbiol; 2004 Mar; 51(5):1279-95. PubMed ID: 14982624 [TBL] [Abstract][Full Text] [Related]
3. Functional cooperation of MutT, MutM and MutY proteins in preventing mutations caused by spontaneous oxidation of guanine nucleotide in Escherichia coli. Tajiri T; Maki H; Sekiguchi M Mutat Res; 1995 May; 336(3):257-67. PubMed ID: 7739614 [TBL] [Abstract][Full Text] [Related]
4. Analysis of spontaneous base substitutions generated in mutator strains of Bacillus subtilis. Sasaki M; Kurusu Y FEMS Microbiol Lett; 2004 May; 234(1):37-42. PubMed ID: 15109717 [TBL] [Abstract][Full Text] [Related]
5. Interactions among the Escherichia coli mutT, mutM, and mutY damage prevention pathways. Fowler RG; White SJ; Koyama C; Moore SC; Dunn RL; Schaaper RM DNA Repair (Amst); 2003 Feb; 2(2):159-73. PubMed ID: 12531387 [TBL] [Abstract][Full Text] [Related]
6. Contribution of GO System Glycosylases to Mutation Prevention in Caulobacter crescentus. Fernández-Silva FS; Schulz ML; Alves IR; Freitas RR; da Rocha RP; Lopes-Kulishev CO; Medeiros MHG; Galhardo RS Environ Mol Mutagen; 2020 Feb; 61(2):246-255. PubMed ID: 31569269 [TBL] [Abstract][Full Text] [Related]
7. RdgB acts to avoid chromosome fragmentation in Escherichia coli. Bradshaw JS; Kuzminov A Mol Microbiol; 2003 Jun; 48(6):1711-25. PubMed ID: 12791149 [TBL] [Abstract][Full Text] [Related]
8. RecA-dependent mutants in Escherichia coli reveal strategies to avoid chromosomal fragmentation. Kouzminova EA; Rotman E; Macomber L; Zhang J; Kuzminov A Proc Natl Acad Sci U S A; 2004 Nov; 101(46):16262-7. PubMed ID: 15531636 [TBL] [Abstract][Full Text] [Related]
9. A combinatorial role for MutY and Fpg DNA glycosylases in mutation avoidance in Mycobacterium smegmatis. Hassim F; Papadopoulos AO; Kana BD; Gordhan BG Mutat Res; 2015 Sep; 779():24-32. PubMed ID: 26125998 [TBL] [Abstract][Full Text] [Related]
10. Enhanced mutagenic potential of 8-oxo-7,8-dihydroguanine when present within a clustered DNA damage site. Pearson CG; Shikazono N; Thacker J; O'Neill P Nucleic Acids Res; 2004; 32(1):263-70. PubMed ID: 14715924 [TBL] [Abstract][Full Text] [Related]
11. Base excision repair system suppresses mutagenesis caused by 8-hydroxy-dGTP in Escherichia coli. Suzuki T; Yamamoto K; Harashima H; Kamiya H Nucleic Acids Symp Ser (Oxf); 2007; (51):51-2. PubMed ID: 18029581 [TBL] [Abstract][Full Text] [Related]
12. Miscoding and misincorporation of 8-oxo-guanine during leading and lagging strand synthesis in Escherichia coli. Watanabe T; van Geldorp G; Najrana T; Yamamura E; Nunoshiba T; Yamamoto K Mol Gen Genet; 2001 Feb; 264(6):836-41. PubMed ID: 11254131 [TBL] [Abstract][Full Text] [Related]
13. Chromosomal fragmentation is the major consequence of the rdgB defect in Escherichia coli. Lukas L; Kuzminov A Genetics; 2006 Feb; 172(2):1359-62. PubMed ID: 16322510 [TBL] [Abstract][Full Text] [Related]
14. Induction of the SOS response and mutations by reactive oxygen-generating compounds in various Escherichia coli mutants defective in the mutM, mutY or soxRS loci. Kato T; Watanabe M; Ohta T Mutagenesis; 1994 May; 9(3):245-51. PubMed ID: 7934965 [TBL] [Abstract][Full Text] [Related]
15. Role of accessory DNA polymerases in DNA replication in Escherichia coli: analysis of the dnaX36 mutator mutant. Gawel D; Pham PT; Fijalkowska IJ; Jonczyk P; Schaaper RM J Bacteriol; 2008 Mar; 190(5):1730-42. PubMed ID: 18156258 [TBL] [Abstract][Full Text] [Related]
16. Development of antibiotic resistance and up-regulation of the antimutator gene pfpI in mutator Pseudomonas aeruginosa due to inactivation of two DNA oxidative repair genes (mutY, mutM). Mandsberg LF; Maciá MD; Bergmann KR; Christiansen LE; Alhede M; Kirkby N; Høiby N; Oliver A; Ciofu O FEMS Microbiol Lett; 2011 Nov; 324(1):28-37. PubMed ID: 22092761 [TBL] [Abstract][Full Text] [Related]
17. Mutagenic effects of gamma-rays and incorporated 8-3H-purines on extracellular lambda phage: influence of mutY and mutM host mutations. Konevega LV; Kalinin VL Mutat Res; 2000 Apr; 459(3):229-35. PubMed ID: 10812335 [TBL] [Abstract][Full Text] [Related]
18. Induction of SOS-independent mutations by benzo[a]pyrene treatment in Escherichia coli cells deficient in MutY or MutM DNA glycosylases: possible role of oxidative lesions. Urios A; Blanco M Mutat Res; 1996 Sep; 356(2):229-35. PubMed ID: 8841490 [TBL] [Abstract][Full Text] [Related]
19. Synthetic lethality with the dut defect in Escherichia coli reveals layers of DNA damage of increasing complexity due to uracil incorporation. Ting H; Kouzminova EA; Kuzminov A J Bacteriol; 2008 Sep; 190(17):5841-54. PubMed ID: 18586941 [TBL] [Abstract][Full Text] [Related]
20. A distinct role of formamidopyrimidine DNA glycosylase (MutM) in down-regulation of accumulation of G, C mutations and protection against oxidative stress in mycobacteria. Jain R; Kumar P; Varshney U DNA Repair (Amst); 2007 Dec; 6(12):1774-85. PubMed ID: 17698424 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]