These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 17616595)
1. The las enzymes control pyruvate metabolism in Lactococcus lactis during growth on maltose. Solem C; Koebmann B; Yang F; Jensen PR J Bacteriol; 2007 Sep; 189(18):6727-30. PubMed ID: 17616595 [TBL] [Abstract][Full Text] [Related]
2. Control analysis as a tool to understand the formation of the las operon in Lactococcus lactis. Koebmann B; Solem C; Jensen PR FEBS J; 2005 May; 272(9):2292-303. PubMed ID: 15853813 [TBL] [Abstract][Full Text] [Related]
3. Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA. Luesink EJ; van Herpen RE; Grossiord BP; Kuipers OP; de Vos WM Mol Microbiol; 1998 Nov; 30(4):789-98. PubMed ID: 10094627 [TBL] [Abstract][Full Text] [Related]
4. Twofold reduction of phosphofructokinase activity in Lactococcus lactis results in strong decreases in growth rate and in glycolytic flux. Andersen HW; Solem C; Hammer K; Jensen PR J Bacteriol; 2001 Jun; 183(11):3458-67. PubMed ID: 11344154 [TBL] [Abstract][Full Text] [Related]
5. Regulation of pyruvate metabolism in Lactococcus lactis depends on the imbalance between catabolism and anabolism. Garrigues C; Mercade M; Cocaign-Bousquet M; Lindley ND; Loubiere P Biotechnol Bioeng; 2001 Jul; 74(2):108-15. PubMed ID: 11369999 [TBL] [Abstract][Full Text] [Related]
7. Pyruvate metabolism in Lactococcus lactis is dependent upon glyceraldehyde-3-phosphate dehydrogenase activity. Even S; Garrigues C; Loubiere P; Lindley ND; Cocaign-Bousquet M Metab Eng; 1999 Jul; 1(3):198-205. PubMed ID: 10937934 [TBL] [Abstract][Full Text] [Related]
8. Identification of a novel operon in Lactococcus lactis encoding three enzymes for lactic acid synthesis: phosphofructokinase, pyruvate kinase, and lactate dehydrogenase. Llanos RM; Harris CJ; Hillier AJ; Davidson BE J Bacteriol; 1993 May; 175(9):2541-51. PubMed ID: 8478320 [TBL] [Abstract][Full Text] [Related]
9. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. Garrigues C; Loubiere P; Lindley ND; Cocaign-Bousquet M J Bacteriol; 1997 Sep; 179(17):5282-7. PubMed ID: 9286977 [TBL] [Abstract][Full Text] [Related]
10. [Effect of 6-phosphofructokinase gene-pfk overexpression on nisin production in Lactococcus lactis N8]. Zhu D; Zhao K; Xu H; Bai Y; Zhang X; Qiao M Wei Sheng Wu Xue Bao; 2015 Apr; 55(4):440-7. PubMed ID: 26211318 [TBL] [Abstract][Full Text] [Related]
11. Molecular characterization of the Lactococcus lactis ptsHI operon and analysis of the regulatory role of HPr. Luesink EJ; Beumer CM; Kuipers OP; De Vos WM J Bacteriol; 1999 Feb; 181(3):764-71. PubMed ID: 9922238 [TBL] [Abstract][Full Text] [Related]
12. Glucose metabolism and regulation of glycolysis in Lactococcus lactis strains with decreased lactate dehydrogenase activity. Garrigues C; Goupil-Feuillerat N; Cocaign-Bousquet M; Renault P; Lindley ND; Loubiere P Metab Eng; 2001 Jul; 3(3):211-7. PubMed ID: 11461143 [TBL] [Abstract][Full Text] [Related]
13. Modulation of gene expression made easy. Solem C; Jensen PR Appl Environ Microbiol; 2002 May; 68(5):2397-403. PubMed ID: 11976114 [TBL] [Abstract][Full Text] [Related]
14. Redirection of pyruvate catabolism in Lactococcus lactis by selection of mutants with additional growth requirements. Henriksen CM; Nilsson D Appl Microbiol Biotechnol; 2001 Sep; 56(5-6):767-75. PubMed ID: 11601628 [TBL] [Abstract][Full Text] [Related]
15. Lactate dehydrogenase has no control on lactate production but has a strong negative control on formate production in Lactococcus lactis. Andersen HW; Pedersen MB; Hammer K; Jensen PR Eur J Biochem; 2001 Dec; 268(24):6379-89. PubMed ID: 11737192 [TBL] [Abstract][Full Text] [Related]
16. The level of pyruvate-formate lyase controls the shift from homolactic to mixed-acid product formation in Lactococcus lactis. Melchiorsen CR; Jokumsen KV; Villadsen J; Israelsen H; Arnau J Appl Microbiol Biotechnol; 2002 Mar; 58(3):338-44. PubMed ID: 11935185 [TBL] [Abstract][Full Text] [Related]
17. Physiology of pyruvate metabolism in Lactococcus lactis. Cocaign-Bousquet M; Garrigues C; Loubiere P; Lindley ND Antonie Van Leeuwenhoek; 1996 Oct; 70(2-4):253-67. PubMed ID: 8879410 [TBL] [Abstract][Full Text] [Related]
18. IS981-mediated adaptive evolution recovers lactate production by ldhB transcription activation in a lactate dehydrogenase-deficient strain of Lactococcus lactis. Bongers RS; Hoefnagel MH; Starrenburg MJ; Siemerink MA; Arends JG; Hugenholtz J; Kleerebezem M J Bacteriol; 2003 Aug; 185(15):4499-507. PubMed ID: 12867459 [TBL] [Abstract][Full Text] [Related]
19. Regulation of acetate kinase isozymes and its importance for mixed-acid fermentation in Lactococcus lactis. Puri P; Goel A; Bochynska A; Poolman B J Bacteriol; 2014 Apr; 196(7):1386-93. PubMed ID: 24464460 [TBL] [Abstract][Full Text] [Related]
20. Improvement in lactic acid production from starch using alpha-amylase-secreting Lactococcus lactis cells adapted to maltose or starch. Okano K; Kimura S; Narita J; Fukuda H; Kondo A Appl Microbiol Biotechnol; 2007 Jul; 75(5):1007-13. PubMed ID: 17384945 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]