These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 17616620)

  • 21. The RhaS activator controls the Erwinia chrysanthemi 3937 genes rhiN, rhiT and rhiE involved in rhamnogalacturonan catabolism.
    Hugouvieux-Cotte-Pattat N
    Mol Microbiol; 2004 Mar; 51(5):1361-74. PubMed ID: 14982630
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Control of the phosphorylation state of the HPr protein of the phosphotransferase system in Bacillus subtilis: implication of the protein phosphatase PrpC.
    Singh KD; Halbedel S; Görke B; Stülke J
    J Mol Microbiol Biotechnol; 2007; 13(1-3):165-71. PubMed ID: 17693724
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptional regulation of the pts operon in Streptococcus salivarius ATCC 25975.
    Gagnon G; Vadeboncoeur C; Frenette M
    Dev Biol Stand; 1995; 85():357-62. PubMed ID: 8586202
    [No Abstract]   [Full Text] [Related]  

  • 24. Analysis of sigma(54)-dependent genes in Enterococcus faecalis: a mannose PTS permease (EII(Man)) is involved in sensitivity to a bacteriocin, mesentericin Y105.
    Héchard Y; Pelletier C; Cenatiempo Y; Frère J
    Microbiology (Reading); 2001 Jun; 147(Pt 6):1575-1580. PubMed ID: 11390688
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of the individual glucose uptake systems of Lactococcus lactis: mannose-PTS, cellobiose-PTS and the novel GlcU permease.
    Castro R; Neves AR; Fonseca LL; Pool WA; Kok J; Kuipers OP; Santos H
    Mol Microbiol; 2009 Feb; 71(3):795-806. PubMed ID: 19054326
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of the ptsN gene product in catabolite repression of the Pseudomonas putida TOL toluene degradation pathway in chemostat cultures.
    Aranda-Olmedo I; Marín P; Ramos JL; Marqués S
    Appl Environ Microbiol; 2006 Nov; 72(11):7418-21. PubMed ID: 16997980
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integration of signals through Crc and PtsN in catabolite repression of Pseudomonas putida TOL plasmid pWW0.
    Aranda-Olmedo I; Ramos JL; Marqués S
    Appl Environ Microbiol; 2005 Aug; 71(8):4191-8. PubMed ID: 16085802
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Class IIa bacteriocin resistance in Enterococcus faecalis V583: the mannose PTS operon mediates global transcriptional responses.
    Opsata M; Nes IF; Holo H
    BMC Microbiol; 2010 Aug; 10():224. PubMed ID: 20738841
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enzyme I NPr, NPr and IIA Ntr are involved in regulation of the poly-beta-hydroxybutyrate biosynthetic genes in Azotobacter vinelandii.
    Noguez R; Segura D; Moreno S; Hernandez A; Juarez K; Espín G
    J Mol Microbiol Biotechnol; 2008; 15(4):244-54. PubMed ID: 17878711
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Regulation of nitrogen metabolism in gram-positive bacteria].
    Doroshchuk NA; Gel'fand MS; Rodionov DA
    Mol Biol (Mosk); 2006; 40(5):919-26. PubMed ID: 17086994
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The major PEP-phosphotransferase systems (PTSs) for glucose, mannose and cellobiose of Listeria monocytogenes, and their significance for extra- and intracellular growth.
    Stoll R; Goebel W
    Microbiology (Reading); 2010 Apr; 156(Pt 4):1069-1083. PubMed ID: 20056707
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activation of glucose transport under oxidative stress in Escherichia coli.
    Rungrassamee W; Liu X; Pomposiello PJ
    Arch Microbiol; 2008 Jul; 190(1):41-9. PubMed ID: 18368388
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Putative mannose-specific phosphotransferase system component IID represses expression of suilysin in serotype 2 Streptococcus suis.
    Lun S; Willson PJ
    Vet Microbiol; 2005 Feb; 105(3-4):169-80. PubMed ID: 15708813
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular analysis of the Salmonella typhimurium tdc operon regulation.
    Kim MJ; Lim S; Ryu S
    J Microbiol Biotechnol; 2008 Jun; 18(6):1024-32. PubMed ID: 18600042
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Routes for fructose utilization by Escherichia coli.
    Kornberg HL
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):355-9. PubMed ID: 11361065
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PTS regulation domain-containing transcriptional activator CelR and sigma factor σ(54) control cellobiose utilization in Clostridium acetobutylicum.
    Nie X; Yang B; Zhang L; Gu Y; Yang S; Jiang W; Yang C
    Mol Microbiol; 2016 Apr; 100(2):289-302. PubMed ID: 26691835
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterisation of a glucose phosphotransferase system in Clostridium acetobutylicum ATCC 824.
    Tangney M; Mitchell WJ
    Appl Microbiol Biotechnol; 2007 Feb; 74(2):398-405. PubMed ID: 17096120
    [TBL] [Abstract][Full Text] [Related]  

  • 38. GlcP constitutes the major glucose uptake system of Streptomyces coelicolor A3(2).
    van Wezel GP; Mahr K; König M; Traag BA; Pimentel-Schmitt EF; Willimek A; Titgemeyer F
    Mol Microbiol; 2005 Jan; 55(2):624-36. PubMed ID: 15659175
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular characteristics of phosphoenolpyruvate: mannose phosphotransferase system in Streptococcus bovis.
    Asanuma N; Yoshii T; Hino T
    Curr Microbiol; 2004 Jul; 49(1):4-9. PubMed ID: 15297922
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sugar import and phytopathogenicity of Spiroplasma citri: glucose and fructose play distinct roles.
    André A; Maucourt M; Moing A; Rolin D; Renaudin J
    Mol Plant Microbe Interact; 2005 Jan; 18(1):33-42. PubMed ID: 15672816
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.