BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 17616630)

  • 21. Putative Membrane Receptors Contribute to Activation and Efficient Signaling of Mitogen-Activated Protein Kinase Cascades during Adaptation of Aspergillus fumigatus to Different Stressors and Carbon Sources.
    Silva LP; Frawley D; Assis LJ; Tierney C; Fleming AB; Bayram O; Goldman GH
    mSphere; 2020 Sep; 5(5):. PubMed ID: 32938702
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of Sho1p adaptor in the pseudohyphal development, drugs sensitivity, osmotolerance and oxidant stress adaptation in the opportunistic yeast Candida lusitaniae.
    Boisnard S; Ruprich-Robert G; Florent M; Da Silva B; Chapeland-Leclerc F; Papon N
    Yeast; 2008 Nov; 25(11):849-59. PubMed ID: 19061190
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A surprisingly large RNase P RNA in Candida glabrata.
    Kachouri R; Stribinskis V; Zhu Y; Ramos KS; Westhof E; Li Y
    RNA; 2005 Jul; 11(7):1064-72. PubMed ID: 15987816
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mutants in the Candida glabrata glycerol channels are sensitized to cell wall stress.
    Beese-Sims SE; Pan SJ; Lee J; Hwang-Wong E; Cormack BP; Levin DE
    Eukaryot Cell; 2012 Dec; 11(12):1512-9. PubMed ID: 23087370
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Requirement of STE50 for osmostress-induced activation of the STE11 mitogen-activated protein kinase kinase kinase in the high-osmolarity glycerol response pathway.
    Posas F; Witten EA; Saito H
    Mol Cell Biol; 1998 Oct; 18(10):5788-96. PubMed ID: 9742096
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stimulation of the yeast high osmolarity glycerol (HOG) pathway: evidence for a signal generated by a change in turgor rather than by water stress.
    Tamás MJ; Rep M; Thevelein JM; Hohmann S
    FEBS Lett; 2000 Apr; 472(1):159-65. PubMed ID: 10781825
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CgSTE11 mediates cross tolerance to multiple environmental stressors in Candida glabrata.
    Huang M; Khan J; Kaur M; Vanega JDT; Patiño OAA; Ramasubramanian AK; Kao KC
    Sci Rep; 2019 Nov; 9(1):17036. PubMed ID: 31745168
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cloning, sequencing and characterization of a gene encoding dihydroxyacetone kinase from Zygosaccharomyces rouxii NRRL2547.
    Wang ZX; Kayingo G; Blomberg A; Prior BA
    Yeast; 2002 Dec; 19(16):1447-58. PubMed ID: 12478592
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polarized localization of yeast Pbs2 depends on osmostress, the membrane protein Sho1 and Cdc42.
    Reiser V; Salah SM; Ammerer G
    Nat Cell Biol; 2000 Sep; 2(9):620-7. PubMed ID: 10980703
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genomic differences between Candida glabrata and Saccharomyces cerevisiae around the MRPL28 and GCN3 loci.
    Walsh DW; Wolfe KH; Butler G
    Yeast; 2002 Aug; 19(11):991-4. PubMed ID: 12125055
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata.
    Castaño I; Pan SJ; Zupancic M; Hennequin C; Dujon B; Cormack BP
    Mol Microbiol; 2005 Feb; 55(4):1246-58. PubMed ID: 15686568
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Purification, characterization, cloning and expression of pyruvate decarboxylase from Torulopsis glabrata IFO005.
    Wang Q; He P; Lu D; Shen A; Jiang N
    J Biochem; 2004 Oct; 136(4):447-55. PubMed ID: 15625313
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell integrity signaling activation in response to hyperosmotic shock in yeast.
    García-Rodríguez LJ; Valle R; Durán A; Roncero C
    FEBS Lett; 2005 Nov; 579(27):6186-90. PubMed ID: 16243316
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Candida glabrata Ste11 is involved in adaptation to hypertonic stress, maintenance of wild-type levels of filamentation and plays a role in virulence.
    Calcagno AM; Bignell E; Rogers TR; Jones MD; Mühlschlegel FA; Haynes K
    Med Mycol; 2005 Jun; 43(4):355-64. PubMed ID: 16110782
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Osmoresponsive proteins and functional assessment strategies in Saccharomyces cerevisiae.
    Blomberg A
    Electrophoresis; 1997 Aug; 18(8):1429-40. PubMed ID: 9298657
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sterol uptake in Candida glabrata: rescue of sterol auxotrophic strains.
    Bard M; Sturm AM; Pierson CA; Brown S; Rogers KM; Nabinger S; Eckstein J; Barbuch R; Lees ND; Howell SA; Hazen KC
    Diagn Microbiol Infect Dis; 2005 Aug; 52(4):285-93. PubMed ID: 15893902
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inner kinetochore of the pathogenic yeast Candida glabrata.
    Stoyan T; Carbon J
    Eukaryot Cell; 2004 Oct; 3(5):1154-63. PubMed ID: 15470243
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dissection of the HOG pathway activated by hydrogen peroxide in Saccharomyces cerevisiae.
    Lee YM; Kim E; An J; Lee Y; Choi E; Choi W; Moon E; Kim W
    Environ Microbiol; 2017 Feb; 19(2):584-597. PubMed ID: 27554843
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Yeast go the whole HOG for the hyperosmotic response.
    O'Rourke SM; Herskowitz I; O'Shea EK
    Trends Genet; 2002 Aug; 18(8):405-12. PubMed ID: 12142009
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A downshift in temperature activates the high osmolarity glycerol (HOG) pathway, which determines freeze tolerance in Saccharomyces cerevisiae.
    Panadero J; Pallotti C; Rodríguez-Vargas S; Randez-Gil F; Prieto JA
    J Biol Chem; 2006 Feb; 281(8):4638-45. PubMed ID: 16371351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.