These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 17616741)

  • 21. Alteration of Blood Flow in a Venular Network by Infusion of Dextran 500: Evaluation with a Laser Speckle Contrast Imaging System.
    Namgung B; Ng YC; Nam J; Leo HL; Kim S
    PLoS One; 2015; 10(10):e0140038. PubMed ID: 26466371
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A decrease in effective diameter of rat mesenteric venules due to leukocyte margination after a bolus injection of pentoxifylline--digital image analysis of an intravital microscopic observation.
    Hussain MA; Merchant SN; Mombasawala LS; Puniyani RR
    Microvasc Res; 2004 May; 67(3):237-44. PubMed ID: 15121449
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contribution of red blood cell aggregation to venous vascular resistance in skeletal muscle.
    Cabel M; Meiselman HJ; Popel AS; Johnson PC
    Am J Physiol; 1997 Feb; 272(2 Pt 2):H1020-32. PubMed ID: 9124410
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of erythrocyte aggregation and venous network geometry on red blood cell axial migration.
    Bishop JJ; Popel AS; Intaglietta M; Johnson PC
    Am J Physiol Heart Circ Physiol; 2001 Aug; 281(2):H939-50. PubMed ID: 11454601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of hematocrit and leukocyte adherence on flow direction in the microcirculation.
    King MR; Bansal D; Kim MB; Sarelius IH
    Ann Biomed Eng; 2004 Jun; 32(6):803-14. PubMed ID: 15255211
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural analysis of red blood cell aggregates under shear flow.
    Chesnutt JK; Marshall JS
    Ann Biomed Eng; 2010 Mar; 38(3):714-28. PubMed ID: 20024623
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow.
    Bagchi P; Johnson PC; Popel AS
    J Biomech Eng; 2005 Dec; 127(7):1070-80. PubMed ID: 16502649
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Premature red blood cells have decreased aggregation and enhanced aggregability.
    Arbell D; Orkin B; Bar-Oz B; Barshtein G; Yedgar S
    J Physiol Sci; 2008 Jun; 58(3):161-5. PubMed ID: 18405459
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characteristics of blood flow resistance under transverse vibration: red blood cell suspension in Dextran-40.
    Shin S; Ku Y; Suh JS; Moon SY; Jang JY
    Ann Biomed Eng; 2003 Oct; 31(9):1077-83. PubMed ID: 14582610
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of dextrans on platelet distribution in arterioles and venules.
    Woldhuis B; Tangelder GJ; Slaaf DW; Reneman RS
    Pflugers Arch; 1993 Nov; 425(3-4):191-8. PubMed ID: 7508595
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flow behavior of erythrocytes in microvessels and glass capillaries: effects of erythrocyte deformation and erythrocyte aggregation.
    Suzuki Y; Tateishi N; Soutani M; Maeda N
    Int J Microcirc Clin Exp; 1996; 16(4):187-94. PubMed ID: 8923151
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increased red cell aggregation does not reduce uteroplacental blood flow in the awake, hemoconcentrated, late-pregnant guinea pig.
    Verkeste CM; Boekkooi PF; Saxena PR; Peeters LL
    Pediatr Res; 1992 Jan; 31(1):91-3. PubMed ID: 1375730
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diameter and blood flow of skeletal muscle venules during local flow regulation.
    House SD; Johnson PC
    Am J Physiol; 1986 May; 250(5 Pt 2):H828-37. PubMed ID: 3706555
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fahraeus effect and cell screening during tube flow of human blood. II. Effect of dextran-induced cell aggregation.
    Gaehtgens P; Kreutz F; Albrecht KH
    Biorheology; 1978; 15(3-4):155-61. PubMed ID: 737318
    [No Abstract]   [Full Text] [Related]  

  • 35. Red blood cell flow cessation and diameter reductions in skeletal muscle capillaries in vivo - the role of oxygen.
    Bosman J; Tangelder GJ; oude Egbrink MG; Reneman RS; Slaaf DW
    Pflugers Arch; 1995 Sep; 430(5):852-61. PubMed ID: 7478943
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Red blood cell aggregation and blood viscosity in an isolated heart preparation.
    Charansonney O; Mouren S; Dufaux J; Duvelleroy M; Vicaut E
    Biorheology; 1993; 30(1):75-84. PubMed ID: 7690613
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative evaluation of flow dynamics of erythrocytes in microvessels: influence of erythrocyte aggregation.
    Soutani M; Suzuki Y; Tateishi N; Maeda N
    Am J Physiol; 1995 May; 268(5 Pt 2):H1959-65. PubMed ID: 7539592
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The mechanism of the dextran-induced red blood cell aggregation.
    Pribush A; Zilberman-Kravits D; Meyerstein N
    Eur Biophys J; 2007 Feb; 36(2):85-94. PubMed ID: 17091267
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Red blood cell aggregation: 45 years being curious.
    Meiselman HJ
    Biorheology; 2009; 46(1):1-19. PubMed ID: 19252224
    [No Abstract]   [Full Text] [Related]  

  • 40. Leukocyte sequestration in the microvasculature in normal and low flow states.
    Eppihimer MJ; Lipowsky HH
    Am J Physiol; 1994 Sep; 267(3 Pt 2):H1122-34. PubMed ID: 8092277
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.