These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 17616819)

  • 1. A finite element dual porosity approach to model deformation-induced fluid flow in cortical bone.
    Fornells P; García-Aznar JM; Doblaré M
    Ann Biomed Eng; 2007 Oct; 35(10):1687-98. PubMed ID: 17616819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: a finite element study.
    Rémond A; Naïli S; Lemaire T
    Biomech Model Mechanobiol; 2008 Dec; 7(6):487-95. PubMed ID: 17990014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poroelastic behaviour of cortical bone under harmonic axial loading: a finite element study at the osteonal scale.
    Nguyen VH; Lemaire T; Naili S
    Med Eng Phys; 2010 May; 32(4):384-90. PubMed ID: 20226715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of vascular porosity on fluid flow and nutrient transport in loaded cortical bone.
    Goulet GC; Hamilton N; Cooper D; Coombe D; Tran D; Martinuzzi R; Zernicke RF
    J Biomech; 2008 Jul; 41(10):2169-75. PubMed ID: 18533159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone resorption induced by fluid flow.
    Johansson L; Edlund U; Fahlgren A; Aspenberg P
    J Biomech Eng; 2009 Sep; 131(9):094505. PubMed ID: 19725702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fatigue microcrack alters fluid velocities in a computational model of interstitial fluid flow in cortical bone.
    Galley SA; Michalek DJ; Donahue SW
    J Biomech; 2006; 39(11):2026-33. PubMed ID: 16115637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fiber matrix model for interstitial fluid flow and permeability in ligaments and tendons.
    Chen CT; Malkus DS; Vanderby R
    Biorheology; 1998; 35(2):103-18. PubMed ID: 10193483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micromechanical modelling of cortical bone.
    Mullins LP; McGarry JP; Bruzzi MS; McHugh PE
    Comput Methods Biomech Biomed Engin; 2007 Jun; 10(3):159-69. PubMed ID: 17558645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Simulation of the rat tibial bone density changes with the finite element method].
    An MY; Ma AJ; Li YH; Wan YM
    Space Med Med Eng (Beijing); 2005 Feb; 18(1):55-7. PubMed ID: 15852552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multilevel finite element modeling for the prediction of local cellular deformation in bone.
    Deligianni DD; Apostolopoulos CA
    Biomech Model Mechanobiol; 2008 Apr; 7(2):151-9. PubMed ID: 17431696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage.
    Babalola OM; Bonassar LJ
    J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational fluid dynamics modeling of insertion and advancement of a reamer into the intramedullary canal of a long bone.
    Gaber O; Behdinan K; de Beer J; Zalzal P; Papini M; Saghir MZ
    Med Eng Phys; 2007 Jan; 29(1):125-33. PubMed ID: 16581284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of bone permeability using accurate microstructural measurements.
    Beno T; Yoon YJ; Cowin SC; Fritton SP
    J Biomech; 2006; 39(13):2378-87. PubMed ID: 16176815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interstitial fluid flow in canaliculi as a mechanical stimulus for cancellous bone remodeling: in silico validation.
    Kameo Y; Adachi T
    Biomech Model Mechanobiol; 2014 Aug; 13(4):851-60. PubMed ID: 24174063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Mechanical response numerical analysis of bone tissue based on liquid saturated biphasic porous medium model].
    Li D; Chen H; Wang Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Jun; 21(3):381-6. PubMed ID: 15250138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydro-mechanical coupling in the periodontal ligament: a porohyperelastic finite element model.
    Bergomi M; Cugnoni J; Galli M; Botsis J; Belser UC; Wiskott HW
    J Biomech; 2011 Jan; 44(1):34-8. PubMed ID: 20825940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards an acoustic model-based poroelastic imaging method: II. experimental investigation.
    Berry GP; Bamber JC; Miller NR; Barbone PE; Bush NL; Armstrong CG
    Ultrasound Med Biol; 2006 Dec; 32(12):1869-85. PubMed ID: 17169699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison and verification of computational methods to determine the permeability of vertebral trabecular bone.
    Widmer RP; Ferguson SJ
    Proc Inst Mech Eng H; 2013 Jun; 227(6):617-28. PubMed ID: 23636744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of cortical canal architecture on lacunocanalicular pore pressure and fluid flow.
    Goulet GC; Cooper DM; Coombe D; Zernicke RF
    Comput Methods Biomech Biomed Engin; 2008 Aug; 11(4):379-87. PubMed ID: 18568832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and numerical identification of cortical bone permeability.
    Malachanne E; Dureisseix D; Cañadas P; Jourdan F
    J Biomech; 2008; 41(3):721-5. PubMed ID: 18023447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.