These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 17616829)

  • 1. Estimating nutrient loadings using chemical mass balance approach.
    Jain CK; Singhal DC; Sharma MK
    Environ Monit Assess; 2007 Nov; 134(1-3):385-96. PubMed ID: 17616829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy metal transport in the hindon river basin, India.
    Jain CK; Sharma MK
    Environ Monit Assess; 2006 Jan; 112(1-3):255-70. PubMed ID: 16404544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of metals in water and sediments of Hindon River, India: impact of industrial and urban discharges.
    Suthar S; Nema AK; Chabukdhara M; Gupta SK
    J Hazard Mater; 2009 Nov; 171(1-3):1088-95. PubMed ID: 19616893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrate concentrations in river waters of the upper Thames and its tributaries.
    Neal C; Jarvie HP; Neal M; Hill L; Wickham H
    Sci Total Environ; 2006 Jul; 365(1-3):15-32. PubMed ID: 16618496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. River water quality and pollution sources in the Pearl River Delta, China.
    Ouyang T; Zhu Z; Kuang Y
    J Environ Monit; 2005 Jul; 7(7):664-9. PubMed ID: 15986044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sewage-effluent phosphorus: a greater risk to river eutrophication than agricultural phosphorus?
    Jarvie HP; Neal C; Withers PJ
    Sci Total Environ; 2006 May; 360(1-3):246-53. PubMed ID: 16226299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Qualitative evaluation of Kanhan river and its tributaries flowing over central Indian plateau.
    Khadse GK; Patni PM; Kelkar PS; Devotta S
    Environ Monit Assess; 2008 Dec; 147(1-3):83-92. PubMed ID: 18157651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water quality assessment of a small peri-urban river using low and high frequency monitoring.
    Ivanovsky A; Criquet J; Dumoulin D; Alary C; Prygiel J; Duponchel L; Billon G
    Environ Sci Process Impacts; 2016 May; 18(5):624-37. PubMed ID: 27145836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass balance approach for assessment of pollution load in the Krishna River.
    Sekhar C; Umamahesh NV
    J Environ Sci Eng; 2004 Apr; 46(2):159-71. PubMed ID: 16649607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of non-point source of pollution using chemical mass balance approach: a case study of River Alaknanda, a tributary of River Ganga, India.
    Sharma MK; Kumar P; Bhanot K; Prajapati P
    Environ Monit Assess; 2021 Jun; 193(7):424. PubMed ID: 34132904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A spatial and seasonal assessment of river water chemistry across North West England.
    Rothwell JJ; Dise NB; Taylor KG; Allott TE; Scholefield P; Davies H; Neal C
    Sci Total Environ; 2010 Jan; 408(4):841-55. PubMed ID: 19926113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water quality in select regions of Cauvery Delta River basin, southern India, with emphasis on monsoonal variation.
    Solaraj G; Dhanakumar S; Murthy KR; Mohanraj R
    Environ Monit Assess; 2010 Jul; 166(1-4):435-44. PubMed ID: 19496010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of spatial and temporal variations in water quality by the application of multivariate statistical methods in the Kali River, Uttar Pradesh, India.
    Singh G; Patel N; Jindal T; Srivastava P; Bhowmik A
    Environ Monit Assess; 2020 May; 192(6):394. PubMed ID: 32458103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of physical loading from photosynthesis/respiration processes in rivers by mass balance.
    Iwanyshyn M; Ryan MC; Chu A
    Sci Total Environ; 2008 Feb; 390(1):205-14. PubMed ID: 17976689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relative contribution of sewage and diffuse phosphorus sources in the River Avon catchment, southern England: implications for nutrient management.
    Bowes MJ; Hilton J; Irons GP; Hornby DD
    Sci Total Environ; 2005 May; 344(1-3):67-81. PubMed ID: 15907511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Titanium in UK rural, agricultural and urban/industrial rivers: geogenic and anthropogenic colloidal/sub-colloidal sources and the significance of within-river retention.
    Neal C; Jarvie H; Rowland P; Lawler A; Sleep D; Scholefield P
    Sci Total Environ; 2011 Apr; 409(10):1843-53. PubMed ID: 21353288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracing sources of nitrate using water chemistry, land use and nitrogen isotopes in the Ganjiang River, China.
    Wang P; Liu J; Qi S; Wang S; Chen X
    Isotopes Environ Health Stud; 2017 Oct; 53(5):539-551. PubMed ID: 28545304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive evaluation of water quality status for entire stretch of Yamuna River, India.
    Jaiswal M; Hussain J; Gupta SK; Nasr M; Nema AK
    Environ Monit Assess; 2019 Mar; 191(4):208. PubMed ID: 30847649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Using nitrate isotope to trace the nitrogen pollution in Chanhe and Laohe river].
    Xing M; Liu WG; Hu J
    Huan Jing Ke Xue; 2010 Oct; 31(10):2305-10. PubMed ID: 21229736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organic and inorganic pollution of the Vistula River basin.
    Kowalkowski T; Gadzała-Kopciuch M; Kosobucki P; Krupczyńska K; Ligor T; Buszewski B
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Mar; 42(4):421-6. PubMed ID: 17365311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.