These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 17617370)

  • 41. Aequorin-expressing mammalian cell lines used to report Ca2+ mobilization.
    Button D; Brownstein M
    Cell Calcium; 1993 Oct; 14(9):663-71. PubMed ID: 7694803
    [TBL] [Abstract][Full Text] [Related]  

  • 42. FlexStation examination of 5-HT3 receptor function using Ca2+ - and membrane potential-sensitive dyes: advantages and potential problems.
    Price KL; Lummis SC
    J Neurosci Methods; 2005 Dec; 149(2):172-7. PubMed ID: 16038983
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inverse agonist and neutral antagonist actions of antidepressants at recombinant and native 5-hydroxytryptamine2C receptors: differential modulation of cell surface expression and signal transduction.
    Chanrion B; Mannoury la Cour C; Gavarini S; Seimandi M; Vincent L; Pujol JF; Bockaert J; Marin P; Millan MJ
    Mol Pharmacol; 2008 Mar; 73(3):748-57. PubMed ID: 18083778
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transient expression of apoaequorin in zebrafish embryos: extending the ability to image calcium transients during later stages of development.
    Cheung CY; Webb SE; Meng A; Miller AL
    Int J Dev Biol; 2006; 50(6):561-9. PubMed ID: 16741871
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A new low-Ca²⁺ affinity GAP indicator to monitor high Ca²⁺ in organelles by luminescence.
    Rodríguez-Prados M; Rojo-Ruiz J; Aulestia FJ; García-Sancho J; Alonso MT
    Cell Calcium; 2015 Dec; 58(6):558-64. PubMed ID: 26412347
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adaptation of aequorin functional assay to high throughput screening.
    Le Poul E; Hisada S; Mizuguchi Y; Dupriez VJ; Burgeon E; Detheux M
    J Biomol Screen; 2002 Feb; 7(1):57-65. PubMed ID: 11897056
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Stable expression of a synthetic gene for the human motilin receptor: use in an aequorin-based receptor activation assay.
    Carreras CW; Siani MA; Santi DV; Dillon SB
    Anal Biochem; 2002 Jan; 300(2):146-51. PubMed ID: 11779105
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Aequorin variants with improved bioluminescence properties.
    Dikici E; Qu X; Rowe L; Millner L; Logue C; Deo SK; Ensor M; Daunert S
    Protein Eng Des Sel; 2009 Apr; 22(4):243-8. PubMed ID: 19168563
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Use of aequorin for G protein-coupled receptor hit identification and compound profiling.
    Brough SJ; Shah P
    Methods Mol Biol; 2009; 552():181-98. PubMed ID: 19513650
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Luminescence of imidazo[1,2-a]pyrazin-3(7H)-one compounds.
    Teranishi K
    Bioorg Chem; 2007 Feb; 35(1):82-111. PubMed ID: 17007903
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recombinant aequorin as a reporter for receptor-mediated changes of intracellular Ca2+ -levels in Drosophila S2 cells.
    Torfs H; Poels J; Detheux M; Dupriez V; Van Loy T; Vercammen L; Vassart G; Parmentier M; Vanden Broeck J
    Invert Neurosci; 2002 Apr; 4(3):119-24. PubMed ID: 12488971
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of 5-HT3A and 5-HT3B receptor subunits in human hippocampus.
    Brady CA; Dover TJ; Massoura AN; Princivalle AP; Hope AG; Barnes NM
    Neuropharmacology; 2007 Apr; 52(5):1284-90. PubMed ID: 17327132
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of a scintillation proximity assay binding method for the human 5-hydroxytryptamine 6 receptor using intact cells.
    Carrick T; Kowal D; Nawoschik S; Zhang G; Chan K; Dunlop J
    Anal Biochem; 2008 Oct; 381(1):27-32. PubMed ID: 18601889
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Aequorin luminescence-based functional calcium assay for heterotrimeric G-proteins in Arabidopsis.
    Tanaka K; Choi J; Stacey G
    Methods Mol Biol; 2013; 1043():45-54. PubMed ID: 23913034
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthesis and receptor binding of new thieno[2,3-d]-pyrimidines as selective ligands of 5-HT(3) receptors.
    Modica MN; Romeo G; Salerno L; Pittalà V; Siracusa MA; Mereghetti I; Cagnotto A; Mennini T; Gáspár R; Gál A; Falkay G; Palkó M; Maksay G; Fülöp F
    Arch Pharm (Weinheim); 2008 Jun; 341(6):333-43. PubMed ID: 18535994
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Measurement of intracellular calcium in cell populations loaded with aequorin: neurokinin-1 responses in U373MG cells.
    Hedley L; Phagoo SB; James IF
    Anal Biochem; 1996 May; 236(2):270-4. PubMed ID: 8660504
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In vitro and in vivo pharmacological characterization of PF-01354082, a novel partial agonist selective for the 5-HT(4) receptor.
    Mikami T; Komada T; Sugimoto H; Suzuki K; Ohmi T; Kimura N; Naganeo R; Nakata E; Nakatani K; Toga T; Eda H; Sakakibara M
    Eur J Pharmacol; 2009 May; 609(1-3):5-12. PubMed ID: 19285067
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 5-HT(3A) receptor subunit is expressed in a subpopulation of GABAergic and enkephalinergic neurons in the mouse dorsal spinal cord.
    Huang J; Wang YY; Wang W; Li YQ; Tamamaki N; Wu SX
    Neurosci Lett; 2008 Aug; 441(1):1-6. PubMed ID: 18586398
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quinazolindione derivatives as potent 5-HT3A receptor antagonists.
    Lee BH; Choi MJ; Jo MN; Seo HJ; Nah SY; Cho YS; Nam G; Pae AN; Rhim H; Choo H
    Bioorg Med Chem; 2009 Jul; 17(13):4793-6. PubMed ID: 19447040
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Isomerization of the proline in the M2-M3 linker is not required for activation of the human 5-HT3A receptor.
    Paulsen IM; Martin IL; Dunn SM
    J Neurochem; 2009 Aug; 110(3):870-8. PubMed ID: 19457066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.