These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 17617819)

  • 1. Hydraulic design of leaves: insights from rehydration kinetics.
    Zwieniecki MA; Brodribb TJ; Holbrook NM
    Plant Cell Environ; 2007 Aug; 30(8):910-21. PubMed ID: 17617819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seeing the forest with the leaves - clues to canopy placement from leaf fossil size and venation characteristics.
    Boyce CK
    Geobiology; 2009 Mar; 7(2):192-9. PubMed ID: 19207570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The rapid light response of leaf hydraulic conductance: new evidence from two experimental methods.
    Scoffoni C; Pou A; Aasamaa K; Sack L
    Plant Cell Environ; 2008 Dec; 31(12):1803-12. PubMed ID: 18771574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaf hydraulics and drought stress: response, recovery and survivorship in four woody temperate plant species.
    Blackman CJ; Brodribb TJ; Jordan GJ
    Plant Cell Environ; 2009 Nov; 32(11):1584-95. PubMed ID: 19627564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Declining hydraulic efficiency as transpiring leaves desiccate: two types of response.
    Brodribb TJ; Holbrook NM
    Plant Cell Environ; 2006 Dec; 29(12):2205-15. PubMed ID: 17081253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The hydraulic architecture of Ginkgo leaves.
    Carvalho MR; Turgeon R; Owens T; Niklas KJ
    Am J Bot; 2017 Sep; 104(9):1285-1298. PubMed ID: 29885239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneity of gas exchange rates over the leaf surface in tobacco: an effect of hydraulic architecture?
    Nardini A; Gortan E; Ramani M; Salleo S
    Plant Cell Environ; 2008 Jun; 31(6):804-12. PubMed ID: 18284586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and hydraulic correlates of heterophylly in Ginkgo biloba.
    Leigh A; Zwieniecki MA; Rockwell FE; Boyce CK; Nicotra AB; Holbrook NM
    New Phytol; 2011 Jan; 189(2):459-70. PubMed ID: 20880226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leafminers help us understand leaf hydraulic design.
    Nardini A; Raimondo F; Lo Gullo MA; Salleo S
    Plant Cell Environ; 2010 Jul; 33(7):1091-100. PubMed ID: 20199625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low air humidity increases leaf-specific hydraulic conductance of Arabidopsis thaliana (L.) Heynh (Brassicaceae).
    Levin M; Lemcoff JH; Cohen S; Kapulnik Y
    J Exp Bot; 2007; 58(13):3711-8. PubMed ID: 17928370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xylem hydraulic and photosynthetic function of Gnetum (Gnetales) species from Papua New Guinea.
    Feild TS; Balun L
    New Phytol; 2008; 177(3):665-675. PubMed ID: 18067531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low leaf hydraulic conductance associated with drought tolerance in soybean.
    Sinclair TR; Zwieniecki MA; Holbrook NM
    Physiol Plant; 2008 Apr; 132(4):446-51. PubMed ID: 18333998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaf hydraulic conductivity and stomatal responses to humidity in amphistomatous leaves.
    Mott KA
    Plant Cell Environ; 2007 Nov; 30(11):1444-9. PubMed ID: 17897414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapour pressure deficit as soil dries in a drained loblolly pine plantation.
    Domec JC; Noormets A; King JS; Sun G; McNulty SG; Gavazzi MJ; Boggs JL; Treasure EA
    Plant Cell Environ; 2009 Aug; 32(8):980-91. PubMed ID: 19344336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaf palmate venation and vascular redundancy confer tolerance of hydraulic disruption.
    Sack L; Dietrich EM; Streeter CM; Sánchez-Gómez D; Holbrook NM
    Proc Natl Acad Sci U S A; 2008 Feb; 105(5):1567-72. PubMed ID: 18227511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Internal coordination between hydraulics and stomatal control in leaves.
    Brodribb TJ; Jordan GJ
    Plant Cell Environ; 2008 Nov; 31(11):1557-64. PubMed ID: 18684244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight into the physiological role of water absorption via the leaf surface from a rehydration kinetics perspective.
    Guzmán-Delgado P; Mason Earles J; Zwieniecki MA
    Plant Cell Environ; 2018 Aug; 41(8):1886-1894. PubMed ID: 29740843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of tree height on branch hydraulics, leaf structure and gas exchange in California redwoods.
    Ambrose AR; Sillett SC; Dawson TE
    Plant Cell Environ; 2009 Jul; 32(7):743-57. PubMed ID: 19210642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can hydraulic design explain patterns of leaf water isotopic enrichment in C
    Barbour MM; Loucos KE; Lockhart EL; Shrestha A; McCallum D; Simonin KA; Song X; Griffani DS; Farquhar GD
    Plant Cell Environ; 2021 Feb; 44(2):432-444. PubMed ID: 33175397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional design space of single-veined leaves: role of tissue hydraulic properties in constraining leaf size and shape.
    Zwieniecki MA; Boyce CK; Holbrook NM
    Ann Bot; 2004 Oct; 94(4):507-13. PubMed ID: 15319225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.