BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

685 related articles for article (PubMed ID: 17618270)

  • 1. Skeletal remodeling in health and disease.
    Zaidi M
    Nat Med; 2007 Jul; 13(7):791-801. PubMed ID: 17618270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skeletal function and structure: implications for tissue-targeted therapeutics.
    Shea JE; Miller SC
    Adv Drug Deliv Rev; 2005 May; 57(7):945-57. PubMed ID: 15876397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrative physiology of the aging bone: insights from animal and cellular models.
    Syed FA; Hoey KA
    Ann N Y Acad Sci; 2010 Nov; 1211():95-106. PubMed ID: 21062298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Central control of bone remodelling.
    Takeda S
    J Neuroendocrinol; 2008 Jun; 20(6):802-7. PubMed ID: 18601702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The new field of neuroskeletal biology.
    Patel MS; Elefteriou F
    Calcif Tissue Int; 2007 May; 80(5):337-47. PubMed ID: 17440766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ossicle and vossicle implant model systems.
    Pettway GJ; McCauley LK
    Methods Mol Biol; 2008; 455():101-10. PubMed ID: 18463813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Taking a toll on the bones: regulation of bone metabolism by innate immune regulators.
    Bar-Shavit Z
    Autoimmunity; 2008 Apr; 41(3):195-203. PubMed ID: 18365832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Describing force-induced bone growth and adaptation by a mathematical model.
    Maldonado S; Findeisen R; Allgöwer F
    J Musculoskelet Neuronal Interact; 2008; 8(1):15-7. PubMed ID: 18398254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of innervation in the control of bone remodeling.
    Chenu C
    J Musculoskelet Neuronal Interact; 2004 Jun; 4(2):132-4. PubMed ID: 15615111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The developmental basis of skeletal cell differentiation and the molecular basis of major skeletal defects.
    Blair HC; Zaidi M; Huang CL; Sun L
    Biol Rev Camb Philos Soc; 2008 Nov; 83(4):401-15. PubMed ID: 18710437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone remodeling, energy metabolism, and the molecular clock.
    Rosen CJ
    Cell Metab; 2008 Jan; 7(1):7-10. PubMed ID: 18177720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The molecular pathogenesis of Paget disease of bone.
    Layfield R
    Expert Rev Mol Med; 2007 Oct; 9(27):1-13. PubMed ID: 17903332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The complexities of skeletal biology.
    Karsenty G
    Nature; 2003 May; 423(6937):316-8. PubMed ID: 12748648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cell biology of bone metabolism.
    Datta HK; Ng WF; Walker JA; Tuck SP; Varanasi SS
    J Clin Pathol; 2008 May; 61(5):577-87. PubMed ID: 18441154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cancellous bone minimodeling-based formation: a Frost, Takahashi legacy.
    Jee WS; Tian XY; Setterberg RB
    J Musculoskelet Neuronal Interact; 2007; 7(3):232-9. PubMed ID: 17947806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A theoretical model for simulating effect of parathyroid hormone on bone metabolism at cellular level.
    Wang Y; Qin QH; Kalyanasundaram S
    Mol Cell Biomech; 2009 Jun; 6(2):101-12. PubMed ID: 19496258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reciprocal regulation of bone and energy metabolism.
    Lee NK; Karsenty G
    Trends Endocrinol Metab; 2008 Jul; 19(5):161-6. PubMed ID: 18407515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the transcriptional and chromatin regulation of mesenchymal stem cells in musculo-skeletal tissues.
    Benayahu D; Shefer G; Shur I
    Ann Anat; 2009 Jan; 191(1):2-12. PubMed ID: 18926677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histomorphometric evaluation of skeletal development.
    Rauch F
    J Musculoskelet Neuronal Interact; 2008; 8(1):29-31. PubMed ID: 18398260
    [No Abstract]   [Full Text] [Related]  

  • 20. The protein tyrosine phosphatase Rptpzeta is expressed in differentiated osteoblasts and affects bone formation in mice.
    Schinke T; Gebauer M; Schilling AF; Lamprianou S; Priemel M; Mueldner C; Neunaber C; Streichert T; Ignatius A; Harroch S; Amling M
    Bone; 2008 Mar; 42(3):524-34. PubMed ID: 18178537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.