These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 17618295)

  • 21. Mutational analyses of the thermostable NAD+-dependent DNA ligase from Thermus filiformis.
    Jeon HJ; Shin HJ; Choi JJ; Hoe HS; Kim HK; Suh SW; Kwon ST
    FEMS Microbiol Lett; 2004 Aug; 237(1):111-8. PubMed ID: 15268945
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human DNA ligase I completely encircles and partially unwinds nicked DNA.
    Pascal JM; O'Brien PJ; Tomkinson AE; Ellenberger T
    Nature; 2004 Nov; 432(7016):473-8. PubMed ID: 15565146
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure-guided mutational analysis of the OB, HhH, and BRCT domains of Escherichia coli DNA ligase.
    Wang LK; Nair PA; Shuman S
    J Biol Chem; 2008 Aug; 283(34):23343-52. PubMed ID: 18515356
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DNA ligases in the repair and replication of DNA.
    Timson DJ; Singleton MR; Wigley DB
    Mutat Res; 2000 Aug; 460(3-4):301-18. PubMed ID: 10946235
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deinococcus radiodurans RNA ligase exemplifies a novel ligase clade with a distinctive N-terminal module that is important for 5'-PO4 nick sealing and ligase adenylylation but dispensable for phosphodiester formation at an adenylylated nick.
    Raymond A; Shuman S
    Nucleic Acids Res; 2007; 35(3):839-49. PubMed ID: 17204483
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human DNA ligase III recognizes DNA ends by dynamic switching between two DNA-bound states.
    Cotner-Gohara E; Kim IK; Hammel M; Tainer JA; Tomkinson AE; Ellenberger T
    Biochemistry; 2010 Jul; 49(29):6165-76. PubMed ID: 20518483
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA binding with a minimal scaffold: structure-function analysis of Lig E DNA ligases.
    Williamson A; Grgic M; Leiros HS
    Nucleic Acids Res; 2018 Sep; 46(16):8616-8629. PubMed ID: 30007325
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural basis of DNA replication origin recognition by an ORC protein.
    Gaudier M; Schuwirth BS; Westcott SL; Wigley DB
    Science; 2007 Aug; 317(5842):1213-6. PubMed ID: 17761880
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SPRY domain-containing SOCS box protein 2: crystal structure and residues critical for protein binding.
    Kuang Z; Yao S; Xu Y; Lewis RS; Low A; Masters SL; Willson TA; Kolesnik TB; Nicholson SE; Garrett TJ; Norton RS
    J Mol Biol; 2009 Feb; 386(3):662-74. PubMed ID: 19154741
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bacteriophage origin of some minimal ATP-dependent DNA ligases: a new structure from Burkholderia pseudomallei with striking similarity to Chlorella virus ligase.
    Pan J; Lian K; Sarre A; Leiros HS; Williamson A
    Sci Rep; 2021 Sep; 11(1):18693. PubMed ID: 34548548
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A quantum mechanical investigation of possible mechanisms for the nucleotidyl transfer reaction catalyzed by DNA polymerase beta.
    Bojin MD; Schlick T
    J Phys Chem B; 2007 Sep; 111(38):11244-52. PubMed ID: 17764165
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of nucleotidyltransferase motifs I, III and IV in the catalysis of phosphodiester bond formation by Chlorella virus DNA ligase.
    Sriskanda V; Shuman S
    Nucleic Acids Res; 2002 Feb; 30(4):903-11. PubMed ID: 11842101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic mechanism of nick sealing by T4 RNA ligase 2 and effects of 3'-OH base mispairs and damaged base lesions.
    Chauleau M; Shuman S
    RNA; 2013 Dec; 19(12):1840-7. PubMed ID: 24158792
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel DNA ligase with broad nucleotide cofactor specificity from the hyperthermophilic crenarchaeon Sulfophobococcus zilligii: influence of ancestral DNA ligase on cofactor utilization.
    Sun Y; Seo MS; Kim JH; Kim YJ; Kim GA; Lee JI; Lee JH; Kwon ST
    Environ Microbiol; 2008 Dec; 10(12):3212-24. PubMed ID: 18647334
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases.
    Vardakou M; Dumon C; Murray JW; Christakopoulos P; Weiner DP; Juge N; Lewis RJ; Gilbert HJ; Flint JE
    J Mol Biol; 2008 Feb; 375(5):1293-305. PubMed ID: 18078955
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nick sensing by vaccinia virus DNA ligase requires a 5' phosphate at the nick and occupancy of the adenylate binding site on the enzyme.
    Sekiguchi J; Shuman S
    J Virol; 1997 Dec; 71(12):9679-84. PubMed ID: 9371633
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How an RNA ligase discriminates RNA versus DNA damage.
    Nandakumar J; Shuman S
    Mol Cell; 2004 Oct; 16(2):211-21. PubMed ID: 15494308
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Binding of rabies virus polymerase cofactor to recombinant circular nucleoprotein-RNA complexes.
    Ribeiro Ede A; Leyrat C; GĂ©rard FC; Albertini AA; Falk C; Ruigrok RW; Jamin M
    J Mol Biol; 2009 Dec; 394(3):558-75. PubMed ID: 19781554
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biochemical and structural characterization of the paralogous benzoate CoA ligases from Burkholderia xenovorans LB400: defining the entry point into the novel benzoate oxidation (box) pathway.
    Bains J; Boulanger MJ
    J Mol Biol; 2007 Nov; 373(4):965-77. PubMed ID: 17884091
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure and two-metal mechanism of a eukaryal nick-sealing RNA ligase.
    Unciuleac MC; Goldgur Y; Shuman S
    Proc Natl Acad Sci U S A; 2015 Nov; 112(45):13868-73. PubMed ID: 26512110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.