These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 17618375)
1. Arsenic bioavailability in polluted mining soils and uptake by tolerant plants (El Cabaco mine, Spain). Casado M; Anawar HM; Garcia-Sanchez A; Regina IS Bull Environ Contam Toxicol; 2007 Jul; 79(1):29-35. PubMed ID: 17618375 [No Abstract] [Full Text] [Related]
2. Arsenic in soils and plants of woodland regenerated on an arsenic-contaminated substrate: a sustainable natural remediation? Madejón P; Lepp NW Sci Total Environ; 2007 Jul; 379(2-3):256-62. PubMed ID: 17034834 [TBL] [Abstract][Full Text] [Related]
3. Characteristics of copper and lead uptake and accumulation by two species of Elsholtzia. Peng HY; Yang XE Bull Environ Contam Toxicol; 2007 Feb; 78(2):152-7. PubMed ID: 17401511 [No Abstract] [Full Text] [Related]
4. Comparison of arsenic resistance in Mediterranean woody shrubs used in restoration activities. Moreno-Jiménez E; Peñalosa JM; Carpena-Ruiz RO; Esteban E Chemosphere; 2008 Mar; 71(3):466-73. PubMed ID: 18037471 [TBL] [Abstract][Full Text] [Related]
5. Soil As contamination and its risk assessment in areas near the industrial districts of Chenzhou City, Southern China. Liao XY; Chen TB; Xie H; Liu YR Environ Int; 2005 Aug; 31(6):791-8. PubMed ID: 15979720 [TBL] [Abstract][Full Text] [Related]
6. Uptake and accumulation of lead by plants from the Bo Ngam lead mine area in Thailand. Rotkittikhun P; Kruatrachue M; Chaiyarat R; Ngernsansaruay C; Pokethitiyook P; Paijitprapaporn A; Baker AJ Environ Pollut; 2006 Nov; 144(2):681-8. PubMed ID: 16533549 [TBL] [Abstract][Full Text] [Related]
7. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Chehregani A; Noori M; Yazdi HL Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362 [TBL] [Abstract][Full Text] [Related]
8. Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland. Krysiak A; Karczewska A Sci Total Environ; 2007 Jul; 379(2-3):190-200. PubMed ID: 17187844 [TBL] [Abstract][Full Text] [Related]
9. Lead, cadmium and arsenic bioavailability in the abandoned mine site of Cabezo Rajao (Murcia, SE Spain). Navarro MC; Pérez-Sirvent C; Martínez-Sánchez MJ; Vidal J; Marimón J Chemosphere; 2006 Apr; 63(3):484-9. PubMed ID: 16213550 [TBL] [Abstract][Full Text] [Related]
10. Total and bioavailable arsenic concentration in arid soils and its uptake by native plants from the pre-Andean zones in Chile. Díaz O; Tapia Y; Pastene R; Montes S; Núñez N; Vélez D; Montoro R Bull Environ Contam Toxicol; 2011 Jun; 86(6):666-9. PubMed ID: 21484519 [TBL] [Abstract][Full Text] [Related]
11. Effect of in situ soil amendments on arsenic uptake in successive harvests of ryegrass (Lolium perenne cv Elka) grown in amended As-polluted soils. Hartley W; Lepp NW Environ Pollut; 2008 Dec; 156(3):1030-40. PubMed ID: 18524441 [TBL] [Abstract][Full Text] [Related]
12. Arsenic microdistribution and speciation in toenail clippings of children living in a historic gold mining area. Pearce DC; Dowling K; Gerson AR; Sim MR; Sutton SR; Newville M; Russell R; McOrist G Sci Total Environ; 2010 May; 408(12):2590-9. PubMed ID: 20067849 [TBL] [Abstract][Full Text] [Related]
13. Search for a plant for phytoremediation--what can we learn from field and hydroponic studies? Zabłudowska E; Kowalska J; Jedynak L; Wojas S; Skłodowska A; Antosiewicz DM Chemosphere; 2009 Oct; 77(3):301-7. PubMed ID: 19733893 [TBL] [Abstract][Full Text] [Related]
14. Effects of nutrient and lime additions in mine site rehabilitation strategies on the accumulation of antimony and arsenic by native Australian plants. Wilson SC; Leech CD; Butler L; Lisle L; Ashley PM; Lockwood PV J Hazard Mater; 2013 Oct; 261():801-7. PubMed ID: 23433572 [TBL] [Abstract][Full Text] [Related]
15. Arsenate tolerance in Silene paradoxa does not rely on phytochelatin-dependent sequestration. Arnetoli M; Vooijs R; ten Bookum W; Galardi F; Gonnelli C; Gabbrielli R; Schat H; Verkleij JA Environ Pollut; 2008 Apr; 152(3):585-91. PubMed ID: 17707110 [TBL] [Abstract][Full Text] [Related]
16. Examination of arsenic(III) and (V) uptake by the desert plant species mesquite (Prosopis spp.) using X-ray absorption spectroscopy. Aldrich MV; Peralta-Videa JR; Parsons JG; Gardea-Torresdey JL Sci Total Environ; 2007 Jul; 379(2-3):249-55. PubMed ID: 17055035 [TBL] [Abstract][Full Text] [Related]
17. Cancer health risk assessment of exposure to arsenic by workers of AngloGold Ashanti-Obuasi gold mine. Obiri S; Dodoo DK; Okai-Sam F; Essumang DK Bull Environ Contam Toxicol; 2006 Feb; 76(2):195-201. PubMed ID: 16467996 [No Abstract] [Full Text] [Related]
18. Arsenic uptake by common marsh fern Thelypteris palustris and its potential for phytoremediation. Anderson L; Walsh MM Sci Total Environ; 2007 Jul; 379(2-3):263-5. PubMed ID: 17113631 [TBL] [Abstract][Full Text] [Related]
19. Influence of soil properties and phosphate addition on arsenic uptake from polluted soils by velvetgrass (Holcus lanatus). Lewińska K; Karczewska A Int J Phytoremediation; 2013; 15(1):91-104. PubMed ID: 23487988 [TBL] [Abstract][Full Text] [Related]
20. The role of chloride salts in chemically enhanced phytoextraction of heavy metals from a contaminated agricultural soil. Komárek M; Tlustos P; Száková J; Chrastný V Bull Environ Contam Toxicol; 2007 Feb; 78(2):176-80. PubMed ID: 17401509 [No Abstract] [Full Text] [Related] [Next] [New Search]