BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 17618454)

  • 1. Relationship between petal abscission and programmed cell death in Prunus yedoensis and Delphinium belladonna.
    Yamada T; Ichimura K; van Doorn WG
    Planta; 2007 Oct; 226(5):1195-205. PubMed ID: 17618454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation of mannitol in the cytoplasm and vacuole during the expansion of sepal cells associated with flower opening in Delphinium × belladonna cv. Bellamosum.
    Norikoshi R; Yamada K; Niki T; Ichimura K
    Planta; 2015 Dec; 242(6):1467-77. PubMed ID: 26316074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programmed cell death (PCD) processes begin extremely early in Alstroemeria petal senescence.
    Wagstaff C; Malcolm P; Rafiq A; Leverentz M; Griffiths G; Thomas B; Stead A; Rogers H
    New Phytol; 2003 Oct; 160(1):49-59. PubMed ID: 33873526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA degradation and nuclear degeneration during programmed cell death in petals of Antirrhinum, Argyranthemum, and Petunia.
    Yamada T; Ichimura K; van Doorn WG
    J Exp Bot; 2006; 57(14):3543-52. PubMed ID: 16957019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear fragmentation and DNA degradation during programmed cell death in petals of morning glory (Ipomoea nil).
    Yamada T; Takatsu Y; Kasumi M; Ichimura K; van Doorn WG
    Planta; 2006 Nov; 224(6):1279-90. PubMed ID: 16738861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auxin involvement in tepal senescence and abscission in Lilium: a tale of two lilies.
    Lombardi L; Arrom L; Mariotti L; Battelli R; Picciarelli P; Kille P; Stead T; Munné-Bosch S; Rogers HJ
    J Exp Bot; 2015 Feb; 66(3):945-56. PubMed ID: 25422499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. InPSR26, a putative membrane protein, regulates programmed cell death during petal senescence in Japanese morning glory.
    Shibuya K; Yamada T; Suzuki T; Shimizu K; Ichimura K
    Plant Physiol; 2009 Feb; 149(2):816-24. PubMed ID: 19036837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular energy depletion triggers programmed cell death during petal senescence in tulip.
    Azad AK; Ishikawa T; Ishikawa T; Sawa Y; Shibata H
    J Exp Bot; 2008; 59(8):2085-95. PubMed ID: 18515833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological changes in senescing petal cells and the regulatory mechanism of petal senescence.
    Shibuya K; Yamada T; Ichimura K
    J Exp Bot; 2016 Oct; 67(20):5909-5918. PubMed ID: 27625416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism underlying asymmetric bending of lateral petals in Delphinium (Ranunculaceae).
    Zhang H; Xue F; Guo L; Cheng J; Jabbour F; DuPasquier PE; Xie Y; Zhang P; Wu Y; Duan X; Kong H; Zhang R
    Curr Biol; 2024 Feb; 34(4):755-768.e4. PubMed ID: 38272029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A homolog of the defender against apoptotic death gene (DAD1) in senescing gladiolus petals is down-regulated prior to the onset of programmed cell death.
    Yamada T; Takatsu Y; Kasumi M; Marubashi W; Ichimura K
    J Plant Physiol; 2004 Nov; 161(11):1281-3. PubMed ID: 15602820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programmed Cell Death Progresses Differentially in Epidermal and Mesophyll Cells of Lily Petals.
    Mochizuki-Kawai H; Niki T; Shibuya K; Ichimura K
    PLoS One; 2015; 10(11):e0143502. PubMed ID: 26605547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auxin Regulates Sucrose Transport to Repress Petal Abscission in Rose (
    Liang Y; Jiang C; Liu Y; Gao Y; Lu J; Aiwaili P; Fei Z; Jiang CZ; Hong B; Ma C; Gao J
    Plant Cell; 2020 Nov; 32(11):3485-3499. PubMed ID: 32843436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homologs of genes associated with programmed cell death in animal cells are differentially expressed during senescence of Ipomoea nil petals.
    Yamada T; Ichimura K; Kanekatsu M; van Doorn WG
    Plant Cell Physiol; 2009 Mar; 50(3):610-25. PubMed ID: 19182226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silencing ATG6 and PI3K accelerates petal senescence and reduces flower number and shoot biomass in petunia.
    Lin Y; Jones ML
    Plant Sci; 2021 Jan; 302():110713. PubMed ID: 33288020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Petal abscission is promoted by jasmonic acid-induced autophagy at Arabidopsis petal bases.
    Furuta Y; Yamamoto H; Hirakawa T; Uemura A; Pelayo MA; Iimura H; Katagiri N; Takeda-Kamiya N; Kumaishi K; Shirakawa M; Ishiguro S; Ichihashi Y; Suzuki T; Goh T; Toyooka K; Ito T; Yamaguchi N
    Nat Commun; 2024 Feb; 15(1):1098. PubMed ID: 38321030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a NAC transcription factor, EPHEMERAL1, that controls petal senescence in Japanese morning glory.
    Shibuya K; Shimizu K; Niki T; Ichimura K
    Plant J; 2014 Sep; 79(6):1044-51. PubMed ID: 24961791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upregulation of a tonoplast-localized cytochrome P450 during petal senescence in Petunia inflata.
    Xu Y; Ishida H; Reisen D; Hanson MR
    BMC Plant Biol; 2006 Apr; 6():8. PubMed ID: 16613603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autophagy regulates progression of programmed cell death during petal senescence in Japanese morning glory.
    Shibuya K; Yamada T; Ichimura K
    Autophagy; 2009 May; 5(4):546-7. PubMed ID: 19337027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional activation of a 37 kDa ethylene responsive cysteine protease gene, RbCP1, is associated with protein degradation during petal abscission in rose.
    Tripathi SK; Singh AP; Sane AP; Nath P
    J Exp Bot; 2009; 60(7):2035-44. PubMed ID: 19346241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.