These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 17618510)
1. Reconstruction of critical size calvarial bone defects in rabbits with glass-fiber-reinforced composite with bioactive glass granule coating. Tuusa SM; Peltola MJ; Tirri T; Puska MA; Röyttä M; Aho H; Sandholm J; Lassila LV; Vallittu PK J Biomed Mater Res B Appl Biomater; 2008 Feb; 84(2):510-9. PubMed ID: 17618510 [TBL] [Abstract][Full Text] [Related]
2. Frontal bone defect repair with experimental glass-fiber-reinforced composite with bioactive glass granule coating. Tuusa SM; Peltola MJ; Tirri T; Lassila LV; Vallittu PK J Biomed Mater Res B Appl Biomater; 2007 Jul; 82(1):149-55. PubMed ID: 17106892 [TBL] [Abstract][Full Text] [Related]
3. A glass fiber-reinforced composite - bioactive glass cranioplasty implant: A case study of an early development stage implant removed due to a late infection. Posti JP; Piitulainen JM; Hupa L; Fagerlund S; Frantzén J; Aitasalo KMJ; Vuorinen V; Serlo W; Syrjänen S; Vallittu PK J Mech Behav Biomed Mater; 2015 Mar; 55():191-200. PubMed ID: 26594779 [TBL] [Abstract][Full Text] [Related]
4. Closure of rabbit calvarial critical-sized defects using protective composite allogeneic and alloplastic bone substitutes. Haddad AJ; Peel SA; Clokie CM; Sándor GK J Craniofac Surg; 2006 Sep; 17(5):926-34. PubMed ID: 17003622 [TBL] [Abstract][Full Text] [Related]
12. Mechanical properties and in vivo performance of load-bearing fiber-reinforced composite intramedullary nails with improved torsional strength. Moritz N; Strandberg N; Zhao DS; Mattila R; Paracchini L; Vallittu PK; Aro HT J Mech Behav Biomed Mater; 2014 Dec; 40():127-139. PubMed ID: 25222871 [TBL] [Abstract][Full Text] [Related]
13. Residual monomers released from glass-fibre-reinforced composite photopolymerised in contact with bone and blood. Tuusa SM; Puska MA; Lassila LV; Vallittu PK J Mater Sci Mater Med; 2005 Jan; 16(1):15-20. PubMed ID: 15754139 [TBL] [Abstract][Full Text] [Related]
15. [Study on repair of critical calvarial defects with nano-hydroxyapatite/collagen/polylactic acid material compounded recombinant human bone morphogenetic protein 2 in rabbits]. Chen P; Liu B Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Nov; 21(11):1191-5. PubMed ID: 18069472 [TBL] [Abstract][Full Text] [Related]
16. Repair of bone segment defects with surface porous fiber-reinforced polymethyl methacrylate (PMMA) composite prosthesis: histomorphometric incorporation model and characterization by SEM. Hautamäki MP; Aho AJ; Alander P; Rekola J; Gunn J; Strandberg N; Vallittu PK Acta Orthop; 2008 Aug; 79(4):555-64. PubMed ID: 18766491 [TBL] [Abstract][Full Text] [Related]
17. Comparison of bioactive glass to demineralized freeze-dried bone allograft in the treatment of intrabony defects around implants in the canine mandible. Hall EE; Meffert RM; Hermann JS; Mellonig JT; Cochran DL J Periodontol; 1999 May; 70(5):526-35. PubMed ID: 10368057 [TBL] [Abstract][Full Text] [Related]
18. Reconstruction of calvarial defects by bioresorbable ceramics: an experimental study in rats. Schliephake H; Redecker K; Kage T Mund Kiefer Gesichtschir; 1997 Mar; 1(2):115-20. PubMed ID: 9384790 [TBL] [Abstract][Full Text] [Related]
19. Effects of enamel matrix derivative on bioactive glass in rat calvarium defects. Potijanyakul P; Sattayasansakul W; Pongpanich S; Leepong N; Kintarak S J Oral Implantol; 2010; 36(3):195-204. PubMed ID: 20553173 [TBL] [Abstract][Full Text] [Related]
20. Bone healing with an in situ-formed bioresorbable polyethylene glycol hydrogel membrane in rabbit calvarial defects. Humber CC; Sándor GK; Davis JM; Peel SA; Brkovic BM; Kim YD; Holmes HI; Clokie CM Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2010 Mar; 109(3):372-84. PubMed ID: 20060340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]