BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 17618983)

  • 1. Experimental models of repetitive brain injuries.
    Weber JT
    Prog Brain Res; 2007; 161():253-61. PubMed ID: 17618983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Experimental models of traumatic brain injury].
    Prieto R; Gutiérrez-González R; Pascual JM; Roda JM; Cerdán S; Matias-Guiu J; Barcia JA
    Neurocirugia (Astur); 2009 Jun; 20(3):225-44. PubMed ID: 19575127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Animal models of traumatic brain injury: is there an optimal model to reproduce human brain injury in the laboratory?
    Morganti-Kossmann MC; Yan E; Bye N
    Injury; 2010 Jul; 41 Suppl 1():S10-3. PubMed ID: 20416875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of the cellular immune response following closed head injury.
    Czigner A; Mihály A; Farkas O; Büki A; Krisztin-Péva B; Dobó E; Barzó P
    Acta Neurochir (Wien); 2007 Mar; 149(3):281-9. PubMed ID: 17288002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prospects for antiapoptotic drug therapy of neurodegenerative diseases.
    Waldmeier PC
    Prog Neuropsychopharmacol Biol Psychiatry; 2003 Apr; 27(2):303-21. PubMed ID: 12657369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic analysis of response to traumatic brain injury in a mouse model of Alzheimer's disease (APPsw).
    Crawford FC; Wood M; Ferguson S; Mathura VS; Faza B; Wilson S; Fan T; O'Steen B; Ait-Ghezala G; Hayes R; Mullan MJ
    Brain Res; 2007 Dec; 1185():45-58. PubMed ID: 17961517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative detection of the expression of mitochondrial cytochrome c oxidase subunits mRNA in the cerebral cortex after experimental traumatic brain injury.
    Dai W; Cheng HL; Huang RQ; Zhuang Z; Shi JX
    Brain Res; 2009 Jan; 1251():287-95. PubMed ID: 19063873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hippocampal volume and mood disorders after traumatic brain injury.
    Jorge RE; Acion L; Starkstein SE; Magnotta V
    Biol Psychiatry; 2007 Aug; 62(4):332-8. PubMed ID: 17123480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebellar injury: clinical relevance and potential in traumatic brain injury research.
    Park E; Ai J; Baker AJ
    Prog Brain Res; 2007; 161():327-38. PubMed ID: 17618988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The optimal dosage and window of opportunity to maintain mitochondrial homeostasis following traumatic brain injury using the uncoupler FCCP.
    Pandya JD; Pauly JR; Sullivan PG
    Exp Neurol; 2009 Aug; 218(2):381-9. PubMed ID: 19477175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The extent of damage following repeated injury to cultured hippocampal cells is dependent on the severity of insult and inter-injury interval.
    Slemmer JE; Weber JT
    Neurobiol Dis; 2005 Apr; 18(3):421-31. PubMed ID: 15755668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell death, glial protein alterations and elevated S-100 beta release in cerebellar cell cultures following mechanically induced trauma.
    Slemmer JE; Weber JT; De Zeeuw CI
    Neurobiol Dis; 2004 Apr; 15(3):563-72. PubMed ID: 15056464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From traumatic brain injury to posttraumatic epilepsy: what animal models tell us about the process and treatment options.
    Pitkänen A; Immonen RJ; Gröhn OH; Kharatishvili I
    Epilepsia; 2009 Feb; 50 Suppl 2():21-9. PubMed ID: 19187291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal development of hippocampal cell death is dependent on tissue strain but not strain rate.
    Cater HL; Sundstrom LE; Morrison B
    J Biomech; 2006; 39(15):2810-8. PubMed ID: 16289515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative T2 mapping as a potential marker for the initial assessment of the severity of damage after traumatic brain injury in rat.
    Kharatishvili I; Sierra A; Immonen RJ; Gröhn OH; Pitkänen A
    Exp Neurol; 2009 May; 217(1):154-64. PubMed ID: 19416663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An in vitro model of traumatic brain injury utilising two-dimensional stretch of organotypic hippocampal slice cultures.
    Morrison B; Cater HL; Benham CD; Sundstrom LE
    J Neurosci Methods; 2006 Jan; 150(2):192-201. PubMed ID: 16098599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review and rationale for the use of genetically engineered animals in the study of traumatic brain injury.
    Longhi L; Saatman KE; Raghupathi R; Laurer HL; Lenzlinger PM; Riess P; Neugebauer E; Trojanowski JQ; Lee VM; Grady MS; Graham DI; McIntosh TK
    J Cereb Blood Flow Metab; 2001 Nov; 21(11):1241-58. PubMed ID: 11702040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Traumatic brain injury and Alzheimer's disease: a review.
    Van Den Heuvel C; Thornton E; Vink R
    Prog Brain Res; 2007; 161():303-16. PubMed ID: 17618986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repeated mild lateral fluid percussion brain injury in the rat causes cumulative long-term behavioral impairments, neuroinflammation, and cortical loss in an animal model of repeated concussion.
    Shultz SR; Bao F; Omana V; Chiu C; Brown A; Cain DP
    J Neurotrauma; 2012 Jan; 29(2):281-94. PubMed ID: 21933013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural dissociation of attentional control and memory in adults with and without mild traumatic brain injury.
    Niogi SN; Mukherjee P; Ghajar J; Johnson CE; Kolster R; Lee H; Suh M; Zimmerman RD; Manley GT; McCandliss BD
    Brain; 2008 Dec; 131(Pt 12):3209-21. PubMed ID: 18952679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.