These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

40 related articles for article (PubMed ID: 1761902)

  • 1. Biomechanical study of Chiba Solid Rod System for scoliosis surgery.
    Nakata Y
    Nihon Seikeigeka Gakkai Zasshi; 1991 Nov; 65(11):1017-27. PubMed ID: 1761902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical study of posterior spinal instrumentations for scoliosis.
    Yamagata M
    Nihon Seikeigeka Gakkai Zasshi; 1984 May; 58(5):523-34. PubMed ID: 6470551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chiba Spinal System in the operative management of scoliosis.
    Nakata Y; Moriya H; Kitahara H; Minami S; Takahashi K; Ohtsuka Y
    Spine (Phila Pa 1976); 1992 Oct; 17(10):1166-73. PubMed ID: 1440005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preclinical testing of a wedge-rod system for fusionless correction of scoliosis.
    Betz RR; Cunningham B; Selgrath C; Drewry T; Sherman MC
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S275-8. PubMed ID: 14560203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical comparison of two-level cervical locking posterior screw/rod and hook/rod techniques.
    Espinoza-Larios A; Ames CP; Chamberlain RH; Sonntag VK; Dickman CA; Crawford NR
    Spine J; 2007; 7(2):194-204. PubMed ID: 17321969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Torsional stiffness of three spine constructs for thoracic scoliosis.
    Farley FA; Tseng KF; Moore DC
    J Spinal Disord; 1999 Apr; 12(2):120-5. PubMed ID: 10229525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pullout strength of pedicle screws versus pedicle and laminar hooks in the thoracic spine.
    Liljenqvist U; Hackenberg L; Link T; Halm H
    Acta Orthop Belg; 2001 Apr; 67(2):157-63. PubMed ID: 11383294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biomechanical analysis of the self-retaining pedicle hook device in posterior spinal fixation.
    van Laar W; Meester RJ; Smit TH; van Royen BJ
    Eur Spine J; 2007 Aug; 16(8):1209-14. PubMed ID: 17203270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New rod-plate anterior instrumentation for thoracolumbar/lumbar scoliosis: biomechanical evaluation compared with dual-rod and single-rod with structural interbody support.
    Zhang H; Johnston CE; Pierce WA; Ashman RB; Bronson DG; Haideri NF
    Spine (Phila Pa 1976); 2006 Dec; 31(25):E934-40. PubMed ID: 17139209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical comparison of different anchors (foundations) for the pediatric dual growing rod technique.
    Mahar AT; Bagheri R; Oka R; Kostial P; Akbarnia BA
    Spine J; 2008; 8(6):933-9. PubMed ID: 18082463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Biomechanical modeling of instrumentation for the scoliotic spine using flexible elements: a feasibility study].
    Poulin F; Aubin CE; Stokes IA; Gardner-Morse M; Labelle H
    Ann Chir; 1998; 52(8):761-7. PubMed ID: 9846426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Static and dynamic analysis of five anterior instrumentation systems for thoracolumbar scoliosis.
    Shimamoto N; Kotani Y; Shono Y; Kadoya K; Abumi K; Minami A; Kaneda K
    Spine (Phila Pa 1976); 2003 Aug; 28(15):1678-85. PubMed ID: 12897491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative biomechanical study of spinal fixation using the combination spinal rod-plate and transpedicular screw fixation system.
    Chang KW; Dewei Z; McAfee PC; Warden KE; Farey ID; Gurr KR
    J Spinal Disord; 1988; 1(4):257-66. PubMed ID: 2980253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harrington instrumentation with spinous process wiring for idiopathic scoliosis.
    Drummond DS
    Orthop Clin North Am; 1988 Apr; 19(2):281-9. PubMed ID: 3357684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel dual-rod screw for thoracoscopic anterior instrumentation: biomechanical evaluation compared with single-rod and double-screw/double-rod anterior constructs.
    Zhang H; Sucato DJ; Pierce WA; Ross D
    Spine (Phila Pa 1976); 2009 Mar; 34(5):E183-8. PubMed ID: 19247158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Primary effect of dual growing rod technique for the treatment of severe scoliosis in young children.
    Li QY; Zhang JG; Qiu GX; Wang YP; Shen JX; Zhao Y; Li SG; Yu B; Wang X; Weng XS
    Chin Med J (Engl); 2010 Jan; 123(2):151-5. PubMed ID: 20137362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new type of distractor for the surgical correction of scoliosis and spondylolisthesis.
    Manaresi C
    Ital J Orthop Traumatol; 1979 Dec; 5(3):267-72. PubMed ID: 553913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Posterior vertebral instrumentation for correction of scoliosis.
    Wu ZK
    Clin Orthop Relat Res; 1987 Feb; (215):40-6. PubMed ID: 3802650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correction of scoliosis with shape-memory alloy.
    Matsumoto K; Tajima N; Kuwahara S
    Nihon Seikeigeka Gakkai Zasshi; 1993 Apr; 67(4):267-74. PubMed ID: 8320478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The clinical biomechanics of scoliosis.
    White AA; Panjabi MM
    Clin Orthop Relat Res; 1976; (118):100-12. PubMed ID: 954262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.