These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 17619192)

  • 41. RNAdetect: efficient computational detection of novel non-coding RNAs.
    Chen CC; Qian X; Yoon BJ
    Bioinformatics; 2019 Apr; 35(7):1133-1141. PubMed ID: 30169792
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fragrep: an efficient search tool for fragmented patterns in genomic sequences.
    Mosig A; Sameith K; Stadler P
    Genomics Proteomics Bioinformatics; 2006 Feb; 4(1):56-60. PubMed ID: 16689703
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Promoter-based identification of novel non-coding RNAs reveals the presence of dicistronic snoRNA-miRNA genes in Arabidopsis thaliana.
    Qu G; Kruszka K; Plewka P; Yang SY; Chiou TJ; Jarmolowski A; Szweykowska-Kulinska Z; Echeverria M; Karlowski WM
    BMC Genomics; 2015 Nov; 16():1009. PubMed ID: 26607788
    [TBL] [Abstract][Full Text] [Related]  

  • 44. STAR3D: a stack-based RNA 3D structural alignment tool.
    Ge P; Zhang S
    Nucleic Acids Res; 2015 Nov; 43(20):e137. PubMed ID: 26184875
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Exploiting conserved structure for faster annotation of non-coding RNAs without loss of accuracy.
    Weinberg Z; Ruzzo WL
    Bioinformatics; 2004 Aug; 20 Suppl 1():i334-41. PubMed ID: 15262817
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efficient conversion of RNA pseudoknots to knot-free structures using a graphical model.
    Chiu JK; Chen YP
    IEEE Trans Biomed Eng; 2015 May; 62(5):1265-71. PubMed ID: 25474805
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Consensus folding of unaligned RNA sequences revisited.
    Bafna V; Tang H; Zhang S
    J Comput Biol; 2006 Mar; 13(2):283-95. PubMed ID: 16597240
    [TBL] [Abstract][Full Text] [Related]  

  • 48. LDSS-P: an advanced algorithm to extract functional short motifs associated with coordinated gene expression.
    Ichida H; Long SR
    Nucleic Acids Res; 2016 Jun; 44(11):5045-53. PubMed ID: 27190233
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ambivalent covariance models.
    Janssen S; Giegerich R
    BMC Bioinformatics; 2015 May; 16():178. PubMed ID: 26017195
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparative analysis of structured RNAs in S. cerevisiae indicates a multitude of different functions.
    Steigele S; Huber W; Stocsits C; Stadler PF; Nieselt K
    BMC Biol; 2007 Jun; 5():25. PubMed ID: 17577407
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rsite: a computational method to identify the functional sites of noncoding RNAs.
    Zeng P; Li J; Ma W; Cui Q
    Sci Rep; 2015 Mar; 5():9179. PubMed ID: 25776805
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The RNAz web server: prediction of thermodynamically stable and evolutionarily conserved RNA structures.
    Gruber AR; Neuböck R; Hofacker IL; Washietl S
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W335-8. PubMed ID: 17452347
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pure multiple RNA secondary structure alignments: a progressive profile approach.
    Höchsmann M; Voss B; Giegerich R
    IEEE/ACM Trans Comput Biol Bioinform; 2004; 1(1):53-62. PubMed ID: 17048408
    [TBL] [Abstract][Full Text] [Related]  

  • 54. GenRGenS: software for generating random genomic sequences and structures.
    Ponty Y; Termier M; Denise A
    Bioinformatics; 2006 Jun; 22(12):1534-5. PubMed ID: 16574695
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reconstruction of ancestral RNA sequences under multiple structural constraints.
    Tremblay-Savard O; Reinharz V; Waldispühl J
    BMC Genomics; 2016 Nov; 17(Suppl 10):862. PubMed ID: 28185557
    [TBL] [Abstract][Full Text] [Related]  

  • 56. MAGNOLIA: multiple alignment of protein-coding and structural RNA sequences.
    Fontaine A; de Monte A; Touzet H
    Nucleic Acids Res; 2008 Jul; 36(Web Server issue):W14-8. PubMed ID: 18515348
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fast and reliable prediction of noncoding RNAs.
    Washietl S; Hofacker IL; Stadler PF
    Proc Natl Acad Sci U S A; 2005 Feb; 102(7):2454-9. PubMed ID: 15665081
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Progress and Current Challenges in Modeling Large RNAs.
    Somarowthu S
    J Mol Biol; 2016 Feb; 428(5 Pt A):736-747. PubMed ID: 26585404
    [TBL] [Abstract][Full Text] [Related]  

  • 59. GraphClust2: Annotation and discovery of structured RNAs with scalable and accessible integrative clustering.
    Miladi M; Sokhoyan E; Houwaart T; Heyne S; Costa F; Grüning B; Backofen R
    Gigascience; 2019 Dec; 8(12):. PubMed ID: 31808801
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A computational pipeline for high- throughput discovery of cis-regulatory noncoding RNA in prokaryotes.
    Yao Z; Barrick J; Weinberg Z; Neph S; Breaker R; Tompa M; Ruzzo WL
    PLoS Comput Biol; 2007 Jul; 3(7):e126. PubMed ID: 17616982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.