These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 17619692)

  • 1. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces.
    Li XM; Reinhoudt D; Crego-Calama M
    Chem Soc Rev; 2007 Aug; 36(8):1350-68. PubMed ID: 17619692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces.
    Yan YY; Gao N; Barthlott W
    Adv Colloid Interface Sci; 2011 Dec; 169(2):80-105. PubMed ID: 21974918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent developments in bio-inspired special wettability.
    Liu K; Yao X; Jiang L
    Chem Soc Rev; 2010 Aug; 39(8):3240-55. PubMed ID: 20589267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtextured superhydrophobic surfaces: a thermodynamic analysis.
    Li W; Amirfazli A
    Adv Colloid Interface Sci; 2007 Apr; 132(2):51-68. PubMed ID: 17331459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superhydrophobic surfaces: from natural to biomimetic to functional.
    Guo Z; Liu W; Su BL
    J Colloid Interface Sci; 2011 Jan; 353(2):335-55. PubMed ID: 20846662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile preparation of poly(ethyl alpha-cyanoacrylate) superhydrophobic and gradient wetting surfaces.
    Li X; Dai H; Tan S; Zhang X; Liu H; Wang Y; Zhao N; Xu J
    J Colloid Interface Sci; 2009 Dec; 340(1):93-7. PubMed ID: 19744667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nonlithographic top-down electrochemical approach for creating hierarchical (micro-nano) superhydrophobic silicon surfaces.
    Wang MF; Raghunathan N; Ziaie B
    Langmuir; 2007 Feb; 23(5):2300-3. PubMed ID: 17266346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of n-hexanol and n-octanol on wetting properties and air entrapment at superhydrophobic surfaces.
    Krasowska M; Ferrari M; Liggieri L; Malysa K
    Phys Chem Chem Phys; 2011 May; 13(20):9452-7. PubMed ID: 21479322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UV and thermally stable superhydrophobic coatings from sol-gel processing.
    Xiu Y; Hess DW; Wong CP
    J Colloid Interface Sci; 2008 Oct; 326(2):465-70. PubMed ID: 18656893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New roughness parameter for the characterization of regularly textured or ordered patterned superhydrophobic surfaces.
    Li W; Diao YP; Wang SY; Fang GP; Wang GC; Dong XJ; Long SC; Qiao GJ
    Langmuir; 2009 Jun; 25(11):6076-80. PubMed ID: 19466773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of chemistry and topology effects on superhydrophobic CF(4)-plasma-treated poly(dimethylsiloxane) (PDMS).
    Manca M; Cortese B; Viola I; Arico AS; Cingolani R; Gigli G
    Langmuir; 2008 Mar; 24(5):1833-43. PubMed ID: 18193908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal geometrical design for superhydrophobic surfaces: effects of a trapezoid microtexture.
    Li W; Cui XS; Fang GP
    Langmuir; 2010 Mar; 26(5):3194-202. PubMed ID: 20112932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition between superhydrophobic states on rough surfaces.
    Patankar NA
    Langmuir; 2004 Aug; 20(17):7097-102. PubMed ID: 15301493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review.
    Genzer J; Efimenko K
    Biofouling; 2006; 22(5-6):339-60. PubMed ID: 17110357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Droplet motion on designed microtextured superhydrophobic surfaces with tunable wettability.
    Fang G; Li W; Wang X; Qiao G
    Langmuir; 2008 Oct; 24(20):11651-60. PubMed ID: 18788770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces.
    Cortese B; D'Amone S; Manca M; Viola I; Cingolani R; Gigli G
    Langmuir; 2008 Mar; 24(6):2712-8. PubMed ID: 18217778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale patterning of microtextured surfaces to control superhydrophobic robustness.
    Cha TG; Yi JW; Moon MW; Lee KR; Kim HY
    Langmuir; 2010 Jun; 26(11):8319-26. PubMed ID: 20151676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in designing superhydrophobic surfaces.
    Celia E; Darmanin T; Taffin de Givenchy E; Amigoni S; Guittard F
    J Colloid Interface Sci; 2013 Jul; 402():1-18. PubMed ID: 23647693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The preparation of superhydrophobic surfaces of hierarchical silicon nanowire structures.
    Kuan WF; Chen LJ
    Nanotechnology; 2009 Jan; 20(3):035605. PubMed ID: 19417300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic effects of bouncing water droplets on superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.