These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Membrane potential dependence of intracellular pH regulation by identified glial cells in the leech central nervous system. Deitmer JW; Szatkowski M J Physiol; 1990 Feb; 421():617-31. PubMed ID: 2112195 [TBL] [Abstract][Full Text] [Related]
4. Acid/base transport across the leech giant glial cell membrane at low external bicarbonate concentration. Deitmer JW; Schneider HP J Physiol; 1998 Oct; 512 ( Pt 2)(Pt 2):459-69. PubMed ID: 9763635 [TBL] [Abstract][Full Text] [Related]
5. The regulation of intracellular pH by identified glial cells and neurones in the central nervous system of the leech. Deitmer JW; Schlue WR J Physiol; 1987 Jul; 388():261-83. PubMed ID: 2821243 [TBL] [Abstract][Full Text] [Related]
10. Mechanisms of pH recovery from intracellular acid loads in the leech connective glial cell. Szatkowski M; Schlue WR Glia; 1992; 5(3):193-200. PubMed ID: 1534066 [TBL] [Abstract][Full Text] [Related]
11. Evidence that glial cells modulate extracellular pH transients induced by neuronal activity in the leech central nervous system. Rose CR; Deitmer JW J Physiol; 1994 Nov; 481 ( Pt 1)(Pt 1):1-5. PubMed ID: 7853232 [TBL] [Abstract][Full Text] [Related]
12. Evidence for glial control of extracellular pH in the leech central nervous system. Deitmer JW Glia; 1992; 5(1):43-7. PubMed ID: 1531809 [TBL] [Abstract][Full Text] [Related]
13. Intracellular pH regulation in fresh and cultured bovine corneal endothelium. II. Na+:HCO3- cotransport and Cl-/HCO3- exchange. Bonanno JA; Giasson C Invest Ophthalmol Vis Sci; 1992 Oct; 33(11):3068-79. PubMed ID: 1399410 [TBL] [Abstract][Full Text] [Related]
15. Na(+)-dependent HCO3- transport and Na+/H+ exchange regulate pHi in human ciliary muscle cells. Stahl F; Lepple-Wienhues A; Koch M; Wiederholt M J Membr Biol; 1992 May; 127(3):215-25. PubMed ID: 1322994 [TBL] [Abstract][Full Text] [Related]
16. The regulation of intracellular pH in monkey kidney epithelial cells (BSC-1). Roles of Na+/H+ antiport, Na+-HCO3(-)-(NaCO3-) symport, and Cl-/HCO3- exchange. Jentsch TJ; Janicke I; Sorgenfrei D; Keller SK; Wiederholt M J Biol Chem; 1986 Sep; 261(26):12120-7. PubMed ID: 3017962 [TBL] [Abstract][Full Text] [Related]
17. Intracellular pH-regulatory mechanisms in pancreatic acinar cells. II. Regulation of H+ and HCO3- transporters by Ca2(+)-mobilizing agonists. Muallem S; Loessberg PA J Biol Chem; 1990 Aug; 265(22):12813-9. PubMed ID: 2165486 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of pHi regulation by locust neurones in isolated ganglia: a microelectrode study. Schwiening CJ; Thomas RC J Physiol; 1992 Feb; 447():693-709. PubMed ID: 1317439 [TBL] [Abstract][Full Text] [Related]
19. Intracellular pH and its regulation in isolated type I carotid body cells of the neonatal rat. Buckler KJ; Vaughan-Jones RD; Peers C; Nye PC J Physiol; 1991 May; 436():107-29. PubMed ID: 2061827 [TBL] [Abstract][Full Text] [Related]
20. Regulation of intracellular pH in reticulospinal neurones of the lamprey, Petromyzon marinus. Chesler M J Physiol; 1986 Dec; 381():241-61. PubMed ID: 3040962 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]