These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 17619802)

  • 1. Performance of anaerobic process on toxicity reduction during treating printing and dyeing wastewater.
    Wang J; Zhang ZJ; Chi LN; Qiao XL; Zhu HX; Long MC; Zhang ZF
    Bull Environ Contam Toxicol; 2007 Jun; 78(6):531-4. PubMed ID: 17619802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of organic compounds during treating printing and dyeing wastewater of different process units.
    Wang J; Long MC; Zhang ZJ; Chi LN; Qiao XL; Zhu HX; Zhang ZF
    Chemosphere; 2008 Mar; 71(1):195-202. PubMed ID: 17997469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of combined process of anoxic baffled reactor-biological contact oxidation treating printing and dyeing wastewater.
    Wu H; Wang S; Kong H; Liu T; Xia M
    Bioresour Technol; 2007 May; 98(7):1501-4. PubMed ID: 16860982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability of expanded granular sludge bed process for terylene artificial silk printing and dyeing wastewater treatment.
    Guan BH
    J Environ Sci (China); 2005; 17(3):419-24. PubMed ID: 16083115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradability of terephthalic acid in terylene artificial silk printing and dyeing wastewater.
    Guan BH; Wu ZB; Wu ZC; Xu GL; Tan TE
    J Environ Sci (China); 2003 May; 15(3):296-301. PubMed ID: 12938976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical oxidation of textile wastewater and its reuse.
    Mohan N; Balasubramanian N; Basha CA
    J Hazard Mater; 2007 Aug; 147(1-2):644-51. PubMed ID: 17336454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colour removal from textile waste water using bioculture in continous mode.
    Meenambal T; Devi D; Begum M
    J Environ Sci Eng; 2006 Oct; 48(4):247-52. PubMed ID: 18179118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute toxicity assessment of textile dyes and textile and dye industrial effluents using Daphnia magna bioassay.
    Verma Y
    Toxicol Ind Health; 2008 Aug; 24(7):491-500. PubMed ID: 19028775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation and toxicity reduction of textile wastewater using immobilized titania nanophotocatalysis.
    Mahmoodi NM; Arami M
    J Photochem Photobiol B; 2009 Jan; 94(1):20-4. PubMed ID: 18948013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance and microbial diversity of a membrane bioreactor treating real textile dyeing wastewater.
    You SJ; Tseng DH; Ou SH; Chang WK
    Environ Technol; 2007 Aug; 28(8):935-41. PubMed ID: 17879852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative whole effluent toxicity assessment of wastewater treatment plant effluents using Daphnia magna.
    Ra JS; Lee BC; Chang NI; Kim SD
    Bull Environ Contam Toxicol; 2008 Mar; 80(3):196-200. PubMed ID: 18193142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of wastewater LC50 of the different process stages of the textile industry.
    Villegas-Navarro A; Ramírez-M Y; Salvador-S MS; Gallardo JM
    Ecotoxicol Environ Saf; 2001 Jan; 48(1):56-61. PubMed ID: 11161678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the efficacy of upflow anaerobic sludge blanket reactor in removal of colour and reduction of COD in real textile wastewater.
    Somasiri W; Li XF; Ruan WQ; Jian C
    Bioresour Technol; 2008 Jun; 99(9):3692-9. PubMed ID: 17719776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic degradation of textile dye bath effluent using Halomonas sp.
    Balamurugan B; Thirumarimurugan M; Kannadasan T
    Bioresour Technol; 2011 May; 102(10):6365-9. PubMed ID: 21463931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of ozonation process on lignin-derived compounds in pulp and paper mill effluents.
    Kreetachat T; Damrongsri M; Punsuwon V; Vaithanomsat P; Chiemchaisri C; Chomsurin C
    J Hazard Mater; 2007 Apr; 142(1-2):250-7. PubMed ID: 16971041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decolorizing and detoxifying textile wastewater, containing both soluble and insoluble dyes, in a full scale combined anaerobic/aerobic system.
    Frijters CT; Vos RH; Scheffer G; Mulder R
    Water Res; 2006 Mar; 40(6):1249-57. PubMed ID: 16499944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of Microtox to assess toxicity removal of industrial effluents from the industrial district of Camaçari (BA, Brazil).
    Araújo CV; Nascimento RB; Oliveira CA; Strotmann UJ; da Silva EM
    Chemosphere; 2005 Mar; 58(9):1277-81. PubMed ID: 15667847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decolorization and decomposition of organic pollutants for reactive and disperse dyes using electron beam technology: effect of the concentrations of pollutants and irradiation dose.
    Ting TM; Jamaludin N
    Chemosphere; 2008 Aug; 73(1):76-80. PubMed ID: 18571692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of biological wastewater treatment on the molecular weight distribution of soluble organic compounds and on the reduction of BOD, COD and P in pulp and paper mill effluent.
    Leiviskä T; Nurmesniemi H; Pöykiö R; Rämö J; Kuokkanen T; Pellinen J
    Water Res; 2008 Aug; 42(14):3952-60. PubMed ID: 18707750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A membrane-based co-treatment strategy for the recovery of print- and beck-dyeing textile effluents.
    Capar G; Yilmaz L; Yetis U
    J Hazard Mater; 2008 Mar; 152(1):316-23. PubMed ID: 17689862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.