These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
359 related articles for article (PubMed ID: 17619930)
1. Ozone reactivity and free radical scavenging behavior of phenolic secondary metabolites in lichens exposed to chronic oxidant air pollution from Mexico City. Valencia-Islas N; Zambrano A; Rojas JL J Chem Ecol; 2007 Aug; 33(8):1619-34. PubMed ID: 17619930 [TBL] [Abstract][Full Text] [Related]
2. Responses of antioxidants in the lichen Ramalina lacera may serve as an early-warning bioindicator system for the detection of air pollution stress. Weissman L; Fraiberg M; Shine L; Garty J; Hochman A FEMS Microbiol Ecol; 2006 Oct; 58(1):41-53. PubMed ID: 16958907 [TBL] [Abstract][Full Text] [Related]
3. Effects of urban air pollutants on elemental accumulation and identification of oxidative stress biomarkers in the transplanted lichen Pseudovernia furfuracea. Oztetik E; Cicek A Environ Toxicol Chem; 2011 Jul; 30(7):1629-36. PubMed ID: 21462237 [TBL] [Abstract][Full Text] [Related]
4. Carbon based secondary compounds do not provide protection against heavy metal road pollutants in epiphytic macrolichens. Gauslaa Y; Yemets OA; Asplund J; Solhaug KA Sci Total Environ; 2016 Jan; 541():795-801. PubMed ID: 26437350 [TBL] [Abstract][Full Text] [Related]
5. Multicity study of air pollution and mortality in Latin America (the ESCALA study). Romieu I; Gouveia N; Cifuentes LA; de Leon AP; Junger W; Vera J; Strappa V; Hurtado-Díaz M; Miranda-Soberanis V; Rojas-Bracho L; Carbajal-Arroyo L; Tzintzun-Cervantes G; Res Rep Health Eff Inst; 2012 Oct; (171):5-86. PubMed ID: 23311234 [TBL] [Abstract][Full Text] [Related]
6. Ecological implication of variation in the secondary metabolites in Parmelioid lichens with respect to altitude. Shukla V; Patel DK; Bajpai R; Semwal M; Upreti DK Environ Sci Pollut Res Int; 2016 Jan; 23(2):1391-7. PubMed ID: 26370809 [TBL] [Abstract][Full Text] [Related]
7. Physiological responses of lichens to factorial fumigations with nitric acid and ozone. Riddell J; Padgett PE; Nash TH Environ Pollut; 2012 Nov; 170():202-10. PubMed ID: 22832332 [TBL] [Abstract][Full Text] [Related]
8. Effects of acute NH3 air pollution on N-sensitive and N-tolerant lichen species. Paoli L; Maslaňáková I; Grassi A; Bačkor M; Loppi S Ecotoxicol Environ Saf; 2015 Dec; 122():377-83. PubMed ID: 26342688 [TBL] [Abstract][Full Text] [Related]
9. Nickel exposure enhances the susceptibility of lichens Usnea amblyoclada and Ramalina celastri to urban atmospheric pollutants. Rodriguez JH; Carreras HA; Pignata ML; González CM Arch Environ Contam Toxicol; 2007 Nov; 53(4):533-40. PubMed ID: 17882471 [TBL] [Abstract][Full Text] [Related]
10. Chemical composition of three Parmelia lichens and antioxidant, antimicrobial and cytotoxic activities of some their major metabolites. Manojlović N; Ranković B; Kosanić M; Vasiljević P; Stanojković T Phytomedicine; 2012 Oct; 19(13):1166-72. PubMed ID: 22921748 [TBL] [Abstract][Full Text] [Related]
11. Antioxidant potential of lichen species and their secondary metabolites. A systematic review. Fernández-Moriano C; Gómez-Serranillos MP; Crespo A Pharm Biol; 2016; 54(1):1-17. PubMed ID: 25885942 [TBL] [Abstract][Full Text] [Related]
12. The response of epiphytic lichens to air pollution and subsets of ecological predictors: a case study from the Italian Prealps. Cristofolini F; Giordani P; Gottardini E; Modenesi P Environ Pollut; 2008 Jan; 151(2):308-17. PubMed ID: 17689161 [TBL] [Abstract][Full Text] [Related]
13. Biopharmaceutical Potential of Two Ramalina Lichens and their Metabolites. Ristic S; Rankovic B; Kosanić M; Stamenkovic S; Stanojković T; Sovrlić M; Manojlović N Curr Pharm Biotechnol; 2016; 17(7):651-8. PubMed ID: 27033512 [TBL] [Abstract][Full Text] [Related]
14. Antioxidant and antimicrobial properties of some lichens and their constituents. Kosanić M; Ranković B J Med Food; 2011 Dec; 14(12):1624-30. PubMed ID: 21861720 [TBL] [Abstract][Full Text] [Related]
15. Neuroprotective activity and cytotoxic potential of two Parmeliaceae lichens: Identification of active compounds. Fernández-Moriano C; Divakar PK; Crespo A; Gómez-Serranillos MP Phytomedicine; 2015 Aug; 22(9):847-55. PubMed ID: 26220632 [TBL] [Abstract][Full Text] [Related]
16. The application of lichens as ecological surrogates of air pollution in the subtropics: a case study in South Brazil. Koch NM; Branquinho C; Matos P; Pinho P; Lucheta F; Martins SM; Vargas VM Environ Sci Pollut Res Int; 2016 Oct; 23(20):20819-20834. PubMed ID: 27476857 [TBL] [Abstract][Full Text] [Related]
17. Chronic ozone exposure alters the secondary metabolite profile, antioxidant potential, anti-inflammatory property, and quality of red pepper fruit from Capsicum baccatum. Bortolin RC; Caregnato FF; Divan Junior AM; Zanotto-Filho A; Moresco KS; Rios Ade O; Salvi Ade O; Ortmann CF; de Carvalho P; Reginatto FH; Gelain DP; Moreira JC Ecotoxicol Environ Saf; 2016 Jul; 129():16-24. PubMed ID: 26970882 [TBL] [Abstract][Full Text] [Related]
18. NO Sebald V; Goss A; Ramm E; Gerasimova JV; Werth S Environ Pollut; 2022 Sep; 308():119678. PubMed ID: 35753543 [TBL] [Abstract][Full Text] [Related]
19. Differential responses of certain lichen species to sulfur-containing solutions under acidic conditions as expressed by the production of stress-ethylene. Garty J; Kauppi M; Kauppi A Environ Res; 1995 May; 69(2):132-43. PubMed ID: 8608772 [TBL] [Abstract][Full Text] [Related]
20. Response of epiphytic lichen communities to decreasing ammonia air concentrations in a moderately polluted area of The Netherlands. Sparrius LB Environ Pollut; 2007 Mar; 146(2):375-9. PubMed ID: 16714078 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]