These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 17619969)

  • 21. Effect of chemical structure and composition of the resin phase on mechanical strength and vinyl conversion of amorphous calcium phosphate-based composites.
    Skrtic D; Antonucci JM; McDonough WG; Liu DW
    J Biomed Mater Res A; 2004 Mar; 68(4):763-72. PubMed ID: 14986331
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A natural component as coinitiator for unfilled dental resin composites.
    Shi S; Nie J
    J Biomed Mater Res B Appl Biomater; 2007 Jul; 82(1):44-50. PubMed ID: 17245738
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of particle size of an amorphous calcium phosphate filler on the mechanical strength and ion release of polymeric composites.
    Lee SY; Regnault WF; Antonucci JM; Skrtic D
    J Biomed Mater Res B Appl Biomater; 2007 Jan; 80(1):11-7. PubMed ID: 16649181
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Poly(propylene glycol) and urethane dimethacrylates improve conversion of dental composites and reveal complexity of cytocompatibility testing.
    Walters NJ; Xia W; Salih V; Ashley PF; Young AM
    Dent Mater; 2016 Feb; 32(2):264-77. PubMed ID: 26764174
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved properties of amorphous calcium phosphate fillers in remineralizing resin composites.
    Skrtic D; Antonucci JM; Eanes ED
    Dent Mater; 1996 Sep; 12(5):295-301. PubMed ID: 9170997
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation of low shrinkage stress Bis-GMA free dental resin composites with a synthesized urethane dimethacrylate monomer.
    Luo S; Liu F; Yu B; He J
    J Biomater Sci Polym Ed; 2019 Feb; 30(2):137-149. PubMed ID: 30518312
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dental composites based on hybrid and surface-modified amorphous calcium phosphates.
    Skrtic D; Antonucci JM; Eanes ED; Eidelman N
    Biomaterials; 2004; 25(7-8):1141-50. PubMed ID: 14643587
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Properties of experimental urethane dimethacrylate-based dental resin composite blocks obtained via thermo-polymerization under high pressure.
    Nguyen JF; Migonney V; Ruse ND; Sadoun M
    Dent Mater; 2013 May; 29(5):535-41. PubMed ID: 23522657
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thio-urethanes improve properties of dual-cured composite cements.
    Bacchi A; Dobson A; Ferracane JL; Consani R; Pfeifer CS
    J Dent Res; 2014 Dec; 93(12):1320-5. PubMed ID: 25248610
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-time curing characteristics of experimental resin composites containing amorphous calcium phosphate.
    Par M; Tarle Z; Hickel R; Ilie N
    Eur J Oral Sci; 2018 Oct; 126(5):426-432. PubMed ID: 30113752
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physicochemical evaluation of bioactive polymeric composites based on hybrid amorphous calcium phosphates.
    Skrtic D; Antonucci JM; Eanes ED; Eichmiller FC; Schumacher GE
    J Biomed Mater Res; 2000; 53(4):381-91. PubMed ID: 10898879
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of bifunctional comonomers on mechanical strength and water sorption of amorphous calcium phosphate- and silanized glass-filled Bis-GMA-based composites.
    Skrtic D; Antonucci JM
    Biomaterials; 2003 Aug; 24(17):2881-8. PubMed ID: 12742726
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Degree of vinyl conversion, polymerization shrinkage and stress development in experimental endodontic composite.
    O'Donnell JN; Skrtic D
    J Biomim Biomater Tissue Eng; 2009 Dec; 4():1-12. PubMed ID: 20411033
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure-Composition-Property Relationships in Polymeric Amorphous Calcium Phosphate-Based Dental Composites.
    O'Donnell JN; Schumacher GE; Antonucci JM; Skrtic D
    Materials (Basel); 2009; 2(4):1929-1959. PubMed ID: 21966588
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of new diacrylate monomers as substitutes for Bis-GMA and UDMA.
    Yoshinaga K; Yoshihara K; Yoshida Y
    Dent Mater; 2021 Jun; 37(6):e391-e398. PubMed ID: 33757654
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of urethane-dimethacrylate derivatives as alternative monomers for the restorative composite matrix.
    Barszczewska-Rybarek IM
    Dent Mater; 2014 Dec; 30(12):1336-44. PubMed ID: 25447843
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of resin matrix composition on the polymerization shrinkage and rheological properties of experimental dental composites.
    Ellakwa A; Cho N; Lee IB
    Dent Mater; 2007 Oct; 23(10):1229-35. PubMed ID: 17182093
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel rechargeable calcium phosphate dental nanocomposite.
    Zhang L; Weir MD; Chow LC; Antonucci JM; Chen J; Xu HH
    Dent Mater; 2016 Feb; 32(2):285-93. PubMed ID: 26743970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biodegradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(epsilon-caprolactone)-poly(ethylene oxide) diols and various chain extenders.
    Gorna K; Gogolewski S
    J Biomed Mater Res; 2002 Jun; 60(4):592-606. PubMed ID: 11948518
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low-temperature flow-synthesis-assisted urethane-grafted zinc oxide-based dental composites: physical, mechanical, and antibacterial responses.
    Bukhari JH; Khan AS; Ijaz K; Zahid S; Chaudhry AA; Kaleem M
    J Mater Sci Mater Med; 2021 Jul; 32(8):87. PubMed ID: 34319537
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.