These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 17619972)

  • 21. Effects of the reinforcement morphology on the fatigue properties of hydroxyapatite reinforced polymers.
    Kane RJ; Converse GL; Roeder RK
    J Mech Behav Biomed Mater; 2008 Jul; 1(3):261-8. PubMed ID: 19578474
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Boron nitride nanotube reinforced hydroxyapatite composite: mechanical and tribological performance and in-vitro biocompatibility to osteoblasts.
    Lahiri D; Singh V; Benaduce AP; Seal S; Kos L; Agarwal A
    J Mech Behav Biomed Mater; 2011 Jan; 4(1):44-56. PubMed ID: 21094479
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of morphological features and surface area of hydroxyapatite on the fatigue behavior of hydroxyapatite-polyethylene composites.
    Joseph R; Tanner KE
    Biomacromolecules; 2005; 6(2):1021-6. PubMed ID: 15762673
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultra-high-molecular-weight polyethylene fiber reinforced dental composites: Effect of fiber surface treatment on mechanical properties of the composites.
    Bahramian N; Atai M; Naimi-Jamal MR
    Dent Mater; 2015 Sep; 31(9):1022-9. PubMed ID: 26113427
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Properties of self-reinforced ultra-high-molecular-weight polyethylene composites.
    Deng M; Shalaby SW
    Biomaterials; 1997 May; 18(9):645-55. PubMed ID: 9151996
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of mechanical properties of composites of HDPE/HA/EAA.
    Albano C; Perera R; Cataño L; Karam A; González G
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):467-75. PubMed ID: 21316635
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toughening mechanisms in iron-containing hydroxyapatite/titanium composites.
    Chang Q; Chen DL; Ru HQ; Yue XY; Yu L; Zhang CP
    Biomaterials; 2010 Mar; 31(7):1493-501. PubMed ID: 19954836
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Study on biocompatibility of hydroxyapatite/high density polyethylene (HA/HDPE) nano-composites artificial ossicle].
    Wang G; Zhu S; Tan G; Zhou K; Huang S; Zhao Y; Li Z; Huang B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Jun; 25(3):607-10. PubMed ID: 18693441
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Composite biomaterials with chemical bonding between hydroxyapatite filler particles and PEG/PBT copolymer matrix.
    Liu Q; de Wijn JR; van Blitterswijk CA
    J Biomed Mater Res; 1998 Jun; 40(3):490-7. PubMed ID: 9570082
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Water absorption characteristics of dental composites incorporating hydroxyapatite filler.
    Santos C; Clarke RL; Braden M; Guitian F; Davy KW
    Biomaterials; 2002 Apr; 23(8):1897-904. PubMed ID: 11950060
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.
    Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU
    J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbon nanotube-reinforced hydroxyapatite composite and their interaction with human osteoblast in vitro.
    Khalid P; Hussain MA; Rekha PD; Arun AB
    Hum Exp Toxicol; 2015 May; 34(5):548-56. PubMed ID: 25233896
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calcium hydroxyapatite nanoparticles as a reinforcement filler in dental resin nanocomposite.
    Akhtar K; Pervez C; Zubair N; Khalid H
    J Mater Sci Mater Med; 2021 Oct; 32(10):129. PubMed ID: 34601653
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biodegradable polymer/hydroxyapatite composites: surface analysis and initial attachment of human osteoblasts.
    Rizzi SC; Heath DJ; Coombes AG; Bock N; Textor M; Downes S
    J Biomed Mater Res; 2001 Jun; 55(4):475-86. PubMed ID: 11288075
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of reinforcement particle size on in vitro behavior of beta-tricalcium phosphate-reinforced high-density polyethylene: a novel orthopedic composite.
    Homaeigohar SS; Shokrgozar MA; Javadpour J; Khavandi A; Sadi AY
    J Biomed Mater Res A; 2006 Jul; 78(1):129-38. PubMed ID: 16612817
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimising micro-hydroxyapatite reinforced poly(lactide acid) electrospun scaffolds for bone tissue engineering.
    Kareem MM; Tanner KE
    J Mater Sci Mater Med; 2020 Apr; 31(4):38. PubMed ID: 32253587
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal, creep-recovery and viscoelastic behavior of high density polyethylene/hydroxyapatite nano particles for bone substitutes: effects of gamma radiation.
    Alothman OY; Fouad H; Al-Zahrani SM; Eshra A; Al Rez MF; Ansari SG
    Biomed Eng Online; 2014 Aug; 13():125. PubMed ID: 25168723
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nano-porous thermally sintered nano silica as novel fillers for dental composites.
    Atai M; Pahlavan A; Moin N
    Dent Mater; 2012 Feb; 28(2):133-45. PubMed ID: 22137937
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication and characterization of titanium-matrix composite with 20 vol% hydroxyapatite for use as heavy load-bearing hard tissue replacement.
    Chu C; Xue X; Zhu J; Yin Z
    J Mater Sci Mater Med; 2006 Mar; 17(3):245-51. PubMed ID: 16555116
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical properties and in vivo study of modified-hydroxyapatite/polyetheretherketone biocomposites.
    Ma R; Li Q; Wang L; Zhang X; Fang L; Luo Z; Xue B; Ma L
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():429-439. PubMed ID: 28183629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.