BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 17619989)

  • 1. Increased response of Vero cells to PHBV matrices treated by plasma.
    Lucchesi C; Ferreira BM; Duek EA; Santos AR; Joazeiro PP
    J Mater Sci Mater Med; 2008 Feb; 19(2):635-43. PubMed ID: 17619989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PHBV wet-spun scaffold coated with ELR-REDV improves vascularization for bone tissue engineering.
    Alagoz AS; Rodriguez-Cabello JC; Hasirci V
    Biomed Mater; 2018 Jul; 13(5):055010. PubMed ID: 29974870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Different adhesion rate of sheep BMSCs on copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate before and after photografting modification in vitro].
    Zhao Q; Cai D; Wang Q; Liu B; Chen Z
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Feb; 22(2):167-72. PubMed ID: 18365612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Surface modification of vascular tissue engineering biomaterial by low temperature plasma with NH3, CO2 and O2].
    Lu G; Zhang J; Li JX; Gu YQ; Jiang M; Chen L; Sun HC
    Zhonghua Yi Xue Za Zhi; 2007 Dec; 87(47):3362-6. PubMed ID: 18478953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation.
    Sultana N; Wang M
    Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone generation on PHBV matrices: an in vitro study.
    Köse GT; Korkusuz F; Korkusuz P; Purali N; Ozkul A; Hasirci V
    Biomaterials; 2003 Dec; 24(27):4999-5007. PubMed ID: 14559013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macroporous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrices for bone tissue engineering.
    Köse GT; Kenar H; Hasirci N; Hasirci V
    Biomaterials; 2003 May; 24(11):1949-58. PubMed ID: 12615485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface engineering of PHBV by covalent collagen immobilization to improve cell compatibility.
    Wang Y; Ke Y; Ren L; Wu G; Chen X; Zhao Q
    J Biomed Mater Res A; 2009 Mar; 88(3):616-27. PubMed ID: 18314894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and optimization of biocompatible polycaprolactone/poly (l-lactic-co-glycolic acid) scaffolds with and without microgrooves for tissue engineering applications.
    Alvim Valente C; Cesar Chagastelles P; Fontana Nicoletti N; Ramos Garcez G; Sgarioni B; Herrmann F; Pesenatto G; Goldani E; Zanini ML; Campos MM; Meurer Papaléo R; Braga da Silva J; de Souza Basso NR
    J Biomed Mater Res A; 2018 Jun; 106(6):1522-1534. PubMed ID: 29388321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo tissue engineering of bone using poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) and collagen scaffolds.
    Köse GT; Korkusuz F; Korkusuz P; Hasirci V
    Tissue Eng; 2004; 10(7-8):1234-50. PubMed ID: 15363179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospinning and evaluation of PHBV-based tissue engineering scaffolds with different fibre diameters, surface topography and compositions.
    Tong HW; Wang M; Lu WW
    J Biomater Sci Polym Ed; 2012; 23(6):779-806. PubMed ID: 21418747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cartilage tissue engineering using PHBV and PHBV/Bioglass scaffolds.
    Zhou M; Yu D
    Mol Med Rep; 2014 Jul; 10(1):508-14. PubMed ID: 24737242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement in hydrophilicity of PHBV films by plasma treatment.
    Wang Y; Lu L; Zheng Y; Chen X
    J Biomed Mater Res A; 2006 Mar; 76(3):589-95. PubMed ID: 16278866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-modified electrospun poly(epsilon-caprolactone) scaffold with improved optical transparency and bioactivity for damaged ocular surface reconstruction.
    Sharma S; Gupta D; Mohanty S; Jassal M; Agrawal AK; Tandon R
    Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):899-907. PubMed ID: 24425860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modified PHBV scaffolds by in situ UV polymerization: structural characteristic, mechanical properties and bone mesenchymal stem cell compatibility.
    Ke Y; Wang YJ; Ren L; Zhao QC; Huang W
    Acta Biomater; 2010 Apr; 6(4):1329-36. PubMed ID: 19853067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteoblasts and fibroblasts attachment to poly(3-hydroxybutyric acid-co-3-hydrovaleric acid) (PHBV) film and electrospun scaffolds.
    Kaniuk Ł; Krysiak ZJ; Metwally S; Stachewicz U
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110668. PubMed ID: 32204096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of blends of bioabsorbable poly(L-lactic acid)/poly(hydroxybutyrate- co-hydroxyvalerate) as surfaces for Vero cell culture.
    Santos AR; Ferreira BM; Duek EA; Dolder H; Wada ML
    Braz J Med Biol Res; 2005 Nov; 38(11):1623-32. PubMed ID: 16258631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) based tissue engineering matrices.
    Köse GT; Ber S; Korkusuz F; Hasirci V
    J Mater Sci Mater Med; 2003 Feb; 14(2):121-6. PubMed ID: 15348483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) supports in vitro osteogenesis.
    Kumarasuriyar A; Jackson RA; Grøndahl L; Trau M; Nurcombe V; Cool SM
    Tissue Eng; 2005; 11(7-8):1281-95. PubMed ID: 16144464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers for skin tissue engineering: effects of topography, mechanical, and chemical stimuli.
    Kuppan P; Vasanthan KS; Sundaramurthi D; Krishnan UM; Sethuraman S
    Biomacromolecules; 2011 Sep; 12(9):3156-65. PubMed ID: 21800891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.