These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 17619991)

  • 41. Streptococcus mutans adhesion on nickel titanium (NiTi) and copper-NiTi archwires: A comparative prospective clinical study.
    Abraham KS; Jagdish N; Kailasam V; Padmanabhan S
    Angle Orthod; 2017 May; 87(3):448-454. PubMed ID: 27849122
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reduction of Ni release and improvement of the friction behaviour of NiTi orthodontic archwires by oxidation treatments.
    Espinar E; Llamas JM; Michiardi A; Ginebra MP; Gil FJ
    J Mater Sci Mater Med; 2011 May; 22(5):1119-25. PubMed ID: 21437639
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effect of surface treatment and clinical use on friction in NiTi orthodontic wires.
    Wichelhaus A; Geserick M; Hibst R; Sander FG
    Dent Mater; 2005 Oct; 21(10):938-45. PubMed ID: 15923033
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [The surface roughness of orthodontic wires--a laser optical and profilometric study].
    Hartel A; Bourauel C; Drescher D; Schmuth GP
    Schweiz Monatsschr Zahnmed; 1992; 102(10):1195-202. PubMed ID: 1439696
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nickel-titanium alloys: stress-related temperature transitional range.
    Santoro M; Beshers DN
    Am J Orthod Dentofacial Orthop; 2000 Dec; 118(6):685-92. PubMed ID: 11113804
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Surface characteristics of retrieved coated and nickel-titanium orthodontic archwires.
    Zegan G; Sodor A; Munteanu C
    Rom J Morphol Embryol; 2012; 53(4):935-9. PubMed ID: 23303016
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tribological behaviour of orthodontic archwires under dry and wet sliding conditions in-vitro. I--Frictional behaviour.
    Berradja A; Willems G; Celis JP
    Aust Orthod J; 2006 May; 22(1):11-9. PubMed ID: 16792241
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Study of thermomechanical treatment on mechanical-induced phase transformation of NiTi and TiNiCu wires.
    Seyyed Aghamiri SM; Nili Ahmadabadi M; Shahmir H; Naghdi F; Raygan Sh
    J Mech Behav Biomed Mater; 2013 May; 21():32-6. PubMed ID: 23454366
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison of deactivation forces between thermally activated nickel-titanium archwires.
    Figueirêdo MM; Cançado RH; Freitas KM; Valarelli FP
    J Orthod; 2012 Jun; 39(2):111-6. PubMed ID: 22773674
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of copper addition on the superelastic behavior of Ni-Ti shape memory alloys for orthodontic applications.
    Gil FJ; Planell JA
    J Biomed Mater Res; 1999; 48(5):682-8. PubMed ID: 10490682
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effect of topical fluoride agents on the physical and mechanical properties of NiTi and copper NiTi archwires. An in vivo study.
    Ramalingam A; Kailasam V; Padmanabhan S; Chitharanjan A
    Aust Orthod J; 2008 May; 24(1):26-31. PubMed ID: 18649561
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of corrosion resistance and surface characteristics of orthodontic wires immersed in different mouthwashes.
    Nalbantgil D; Ulkur F; Kardas G; Culha M
    Biomed Mater Eng; 2016 Nov; 27(5):539-549. PubMed ID: 27886000
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Variation in surface topography of different NiTi orthodontic archwires in various commercial fluoride-containing environments.
    Huang HH
    Dent Mater; 2007 Jan; 23(1):24-33. PubMed ID: 16417915
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Preformed round-section NiTi arch wires: the mechanical and clinical aspects].
    Nardi E; Gambarini G; Tosti R
    Minerva Stomatol; 1993 May; 42(5):217-21. PubMed ID: 8413105
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The NiTi superelastic alloy application to the dentistry field.
    Torrisi L
    Biomed Mater Eng; 1999; 9(1):39-47. PubMed ID: 10436852
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evolution of flexural rigidity according to the cross-sectional dimension of a superelastic nickel titanium orthodontic wire.
    Garrec P; Tavernier B; Jordan L
    Eur J Orthod; 2005 Aug; 27(4):402-7. PubMed ID: 16043477
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Surface corrosion and fracture resistance of two nickel-titanium-based archwires induced by fluoride, pH, and thermocycling. An in vitro comparative study.
    Perinetti G; Contardo L; Ceschi M; Antoniolli F; Franchi L; Baccetti T; Di Lenarda R
    Eur J Orthod; 2012 Feb; 34(1):1-9. PubMed ID: 21041836
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Studies on laser- and plasma-welded titanium.
    Roggensack M; Walter MH; Böning KW
    Dent Mater; 1993 Mar; 9(2):104-7. PubMed ID: 8595837
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Surface ultrastructure and mechanical properties of three different white-coated NiTi archwires.
    Ryu SH; Lim BS; Kwak EJ; Lee GJ; Choi S; Park KH
    Scanning; 2015; 37(6):414-21. PubMed ID: 26130130
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thermal analysis of as-received and clinically retrieved copper-nickel-titanium orthodontic archwires.
    Biermann MC; Berzins DW; Bradley TG
    Angle Orthod; 2007 May; 77(3):499-503. PubMed ID: 17465660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.