These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 17620009)
1. Raman spectra of proteinaceous materials used in paintings: a multivariate analytical approach for classification and identification. Nevin A; Osticioli I; Anglos D; Burnstock A; Cather S; Castellucci E Anal Chem; 2007 Aug; 79(16):6143-51. PubMed ID: 17620009 [TBL] [Abstract][Full Text] [Related]
2. Analysis of protein-based media commonly found in paintings using synchronous fluorescence spectroscopy combined with multivariate statistical analysis. Nevin A; Cather S; Burnstock A; Anglos D Appl Spectrosc; 2008 May; 62(5):481-9. PubMed ID: 18498688 [TBL] [Abstract][Full Text] [Related]
3. Excitation wavelength dependent surface-enhanced Raman spectra of a dipping film of azobenzene-containing long-chain fatty acid on a silver mirror. Jung YM; Sato H; Ikeda T; Tashiro H; Ozaki Y Spectrochim Acta A Mol Biomol Spectrosc; 2004 Jul; 60(8-9):1941-5. PubMed ID: 15248971 [TBL] [Abstract][Full Text] [Related]
4. [Confocal micro Raman spectroscopy for the identification of the binder used in Chinese painted cultural relics]. Huang JH; Yang L; Yu SS Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Mar; 31(3):687-90. PubMed ID: 21595219 [TBL] [Abstract][Full Text] [Related]
5. Effect of excitation wavelength on the Raman spectroscopy of the porcine photoreceptor layer from the area centralis. Beattie JR; Brockbank S; McGarvey JJ; Curry WJ Mol Vis; 2005 Sep; 11():825-32. PubMed ID: 16254551 [TBL] [Abstract][Full Text] [Related]
6. Analysis of protein-based binding media found in paintings using laser induced fluorescence spectroscopy. Nevin A; Cather S; Anglos D; Fotakis C Anal Chim Acta; 2006 Jul; 573-574():341-6. PubMed ID: 17723543 [TBL] [Abstract][Full Text] [Related]
7. Analysis of post-Byzantine icons from the Church of the Assumption in Cephalonia, Ionian Islands, Greece: a multi-method approach. Kouloumpi E; Vandenabeele P; Lawson G; Pavlidis V; Moens L Anal Chim Acta; 2007 Aug; 598(1):169-79. PubMed ID: 17693322 [TBL] [Abstract][Full Text] [Related]
8. The contribution of gas chromatography to the resynthesis of the post-Byzantine artist's technique. Kouloumpi E; Lawson G; Pavlidis V Anal Bioanal Chem; 2007 Feb; 387(3):803-12. PubMed ID: 17089105 [TBL] [Abstract][Full Text] [Related]
9. Qualitative analysis using Raman spectroscopy and chemometrics: a comprehensive model system for narcotics analysis. O'Connell ML; Ryder AG; Leger MN; Howley T Appl Spectrosc; 2010 Oct; 64(10):1109-21. PubMed ID: 20925980 [TBL] [Abstract][Full Text] [Related]
10. Raman identification of yellow synthetic organic pigments in modern and contemporary paintings: reference spectra and case studies. Ropret P; Centeno SA; Bukovec P Spectrochim Acta A Mol Biomol Spectrosc; 2008 Feb; 69(2):486-97. PubMed ID: 17590389 [TBL] [Abstract][Full Text] [Related]
11. Examination of cellulose textile fibres in historical objects by micro-Raman spectroscopy. Kavkler K; Demšar A Spectrochim Acta A Mol Biomol Spectrosc; 2011 Feb; 78(2):740-6. PubMed ID: 21190892 [TBL] [Abstract][Full Text] [Related]
12. Comparison between traditional strategies and classification technique (SIMCA) in the identification of old proteinaceous binders. Checa-Moreno R; Manzano E; Mirón G; Capitan-Vallvey LF Talanta; 2008 May; 75(3):697-704. PubMed ID: 18585134 [TBL] [Abstract][Full Text] [Related]
13. Methods for extracting biochemical information from bacterial Raman spectra: focus on a group of structurally similar biomolecules--fatty acids. De Gelder J; De Gussem K; Vandenabeele P; Vancanneyt M; De Vos P; Moens L Anal Chim Acta; 2007 Nov; 603(2):167-75. PubMed ID: 17963837 [TBL] [Abstract][Full Text] [Related]
14. A novel extremophile strategy studied by Raman spectroscopy. Edwards HG Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1126-32. PubMed ID: 17267270 [TBL] [Abstract][Full Text] [Related]
15. Classification of colonic tissues using near-infrared Raman spectroscopy and support vector machines. Widjaja E; Zheng W; Huang Z Int J Oncol; 2008 Mar; 32(3):653-62. PubMed ID: 18292943 [TBL] [Abstract][Full Text] [Related]
16. Raman spectroscopy for the identification of pigments and color measurement in Dugès watercolors. Frausto-Reyes C; Ortiz-Morales M; Bujdud-Pérez JM; Magaña-Cota GE; Mejía-Falcón R Spectrochim Acta A Mol Biomol Spectrosc; 2009 Dec; 74(5):1275-9. PubMed ID: 19875330 [TBL] [Abstract][Full Text] [Related]
17. Curie-point pyrolysis-gas chromatography/mass spectrometry in the art field. 2--The characterization of proteinaceous binders. Carbini M; Stevanato R; Rovea M; Traldi P; Favretto D Rapid Commun Mass Spectrom; 1996; 10(10):1240-2. PubMed ID: 8759333 [TBL] [Abstract][Full Text] [Related]
18. Identification of proteins in renaissance paintings by proteomics. Tokarski C; Martin E; Rolando C; Cren-Olivé C Anal Chem; 2006 Mar; 78(5):1494-502. PubMed ID: 16503599 [TBL] [Abstract][Full Text] [Related]
19. Chemical characterization and classification of pollen. Schulte F; Lingott J; Panne U; Kneipp J Anal Chem; 2008 Dec; 80(24):9551-6. PubMed ID: 18975984 [TBL] [Abstract][Full Text] [Related]
20. Single seed Raman measurements allow taxonomical discrimination of Apiaceae accessions collected in gene banks. Baranski R; Baranska M; Schulz H; Simon PW; Nothnagel T Biopolymers; 2006 Apr; 81(6):497-505. PubMed ID: 16421916 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]