These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
774 related articles for article (PubMed ID: 17620014)
1. Determination of the partial reactions of rotational catalysis in F1-ATPase. Scanlon JA; Al-Shawi MK; Le NP; Nakamoto RK Biochemistry; 2007 Jul; 46(30):8785-97. PubMed ID: 17620014 [TBL] [Abstract][Full Text] [Related]
2. A model of stepping kinetics for rotary enzymes. Application to the F1-ATPase. Goldstein BN; Aksirov AM; Zakrjevskaya DT Biosystems; 2011 Apr; 104(1):9-13. PubMed ID: 21195126 [TBL] [Abstract][Full Text] [Related]
3. A rotor-stator cross-link in the F1-ATPase blocks the rate-limiting step of rotational catalysis. Scanlon JA; Al-Shawi MK; Nakamoto RK J Biol Chem; 2008 Sep; 283(38):26228-40. PubMed ID: 18628203 [TBL] [Abstract][Full Text] [Related]
4. Escherichia coli ATP synthase alpha subunit Arg-376: the catalytic site arginine does not participate in the hydrolysis/synthesis reaction but is required for promotion to the steady state. Le NP; Omote H; Wada Y; Al-Shawi MK; Nakamoto RK; Futai M Biochemistry; 2000 Mar; 39(10):2778-83. PubMed ID: 10704230 [TBL] [Abstract][Full Text] [Related]
5. Thermodynamic analyses of the catalytic pathway of F1-ATPase from Escherichia coli. Implications regarding the nature of energy coupling by F1-ATPases. al-Shawi MK; Parsonage D; Senior AE J Biol Chem; 1990 Mar; 265(8):4402-10. PubMed ID: 2137823 [TBL] [Abstract][Full Text] [Related]
6. The Escherichia coli FOF1 gammaM23K uncoupling mutant has a higher K0.5 for Pi. Transition state analysis of this mutant and others reveals that synthesis and hydrolysis utilize the same kinetic pathway. Al-Shawi MK; Ketchum CJ; Nakamoto RK Biochemistry; 1997 Oct; 36(42):12961-9. PubMed ID: 9335556 [TBL] [Abstract][Full Text] [Related]
7. Catalytic control and coupling efficiency of the Escherichia coli FoF1 ATP synthase: influence of the Fo sector and epsilon subunit on the catalytic transition state. Peskova YB; Nakamoto RK Biochemistry; 2000 Sep; 39(38):11830-6. PubMed ID: 10995251 [TBL] [Abstract][Full Text] [Related]
8. Isolated noncatalytic and catalytic subunits of F1-ATPase exhibit similar, albeit not identical, energetic strategies for recognizing adenosine nucleotides. Salcedo G; Cano-Sánchez P; de Gómez-Puyou MT; Velázquez-Campoy A; García-Hernández E Biochim Biophys Acta; 2014 Jan; 1837(1):44-50. PubMed ID: 23994287 [TBL] [Abstract][Full Text] [Related]
9. Intragenic and intergenic suppression of the Escherichia coli ATP synthase subunit a mutation of Gly-213 to Asn: functional interactions between residues in the proton transport site. Kuo PH; Nakamoto RK Biochem J; 2000 May; 347 Pt 3(Pt 3):797-805. PubMed ID: 10769185 [TBL] [Abstract][Full Text] [Related]
10. Mutations in the nucleotide binding domain of the alpha subunits of the F1-ATPase from thermophilic Bacillus PS3 that affect cross-talk between nucleotide binding sites. Grodsky NB; Dou C; Allison WS Biochemistry; 1998 Jan; 37(4):1007-14. PubMed ID: 9454591 [TBL] [Abstract][Full Text] [Related]
11. Identification of the betaTP site in the x-ray structure of F1-ATPase as the high-affinity catalytic site. Mao HZ; Weber J Proc Natl Acad Sci U S A; 2007 Nov; 104(47):18478-83. PubMed ID: 18003896 [TBL] [Abstract][Full Text] [Related]
12. 2-Site versus 3-site models of ATP hydrolysis by F Nath S Theory Biosci; 2024 Sep; 143(3):217-227. PubMed ID: 39078560 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of energy coupling in the FOF1-ATP synthase: the uncoupling mutation, gammaM23K, disrupts the use of binding energy to drive catalysis. Al-Shawi MK; Nakamoto RK Biochemistry; 1997 Oct; 36(42):12954-60. PubMed ID: 9335555 [TBL] [Abstract][Full Text] [Related]
14. Catalysis and rotation of F1 motor: cleavage of ATP at the catalytic site occurs in 1 ms before 40 degree substep rotation. Shimabukuro K; Yasuda R; Muneyuki E; Hara KY; Kinosita K; Yoshida M Proc Natl Acad Sci U S A; 2003 Dec; 100(25):14731-6. PubMed ID: 14657340 [TBL] [Abstract][Full Text] [Related]
15. Recent developments on structural and functional aspects of the F1 sector of H+-linked ATPases. Vignais PV; Satre M Mol Cell Biochem; 1984; 60(1):33-71. PubMed ID: 6231469 [TBL] [Abstract][Full Text] [Related]
16. Unisite catalysis without rotation of the gamma-epsilon domain in Escherichia coli F1-ATPase. García JJ; Capaldi RA J Biol Chem; 1998 Jun; 273(26):15940-5. PubMed ID: 9632641 [TBL] [Abstract][Full Text] [Related]
17. Interactions of gamma T273 and gamma E275 with the beta subunit PSAV segment that links the gamma subunit to the catalytic site Walker homology B aspartate are important to the function of Escherichia coli F1F0 ATP synthase. Boltz KW; Frasch WD Biochemistry; 2005 Jul; 44(27):9497-506. PubMed ID: 15996104 [TBL] [Abstract][Full Text] [Related]
18. Single molecule behavior of inhibited and active states of Escherichia coli ATP synthase F1 rotation. Sekiya M; Hosokawa H; Nakanishi-Matsui M; Al-Shawi MK; Nakamoto RK; Futai M J Biol Chem; 2010 Dec; 285(53):42058-67. PubMed ID: 20974856 [TBL] [Abstract][Full Text] [Related]
19. Acceleration of unisite catalysis of mitochondrial F1-adenosinetriphosphatase by ATP, ADP and pyrophosphate--hydrolysis and release of the previously bound [gamma-32P]ATP. García JJ; Gómez-Puyou A; Maldonado E; Tuena De Gómez-Puyou M Eur J Biochem; 1997 Oct; 249(2):622-9. PubMed ID: 9370375 [TBL] [Abstract][Full Text] [Related]
20. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Yasuda R; Noji H; Yoshida M; Kinosita K; Itoh H Nature; 2001 Apr; 410(6831):898-904. PubMed ID: 11309608 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]