These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 17620050)

  • 1. Bioinformatic approaches for modeling the substrate specificity of HIV-1 protease: an overview.
    Rögnvaldsson T; You L; Garwicz D
    Expert Rev Mol Diagn; 2007 Jul; 7(4):435-51. PubMed ID: 17620050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinformatic approaches for predicting substrates of proteases.
    Song J; Tan H; Boyd SE; Shen H; Mahmood K; Webb GI; Akutsu T; Whisstock JC; Pike RN
    J Bioinform Comput Biol; 2011 Feb; 9(1):149-78. PubMed ID: 21328711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteochemometrics mapping of the interaction space for retroviral proteases and their substrates.
    Kontijevskis A; Petrovska R; Yahorava S; Komorowski J; Wikberg JE
    Bioorg Med Chem; 2009 Jul; 17(14):5229-37. PubMed ID: 19539482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive bioinformatic analysis of the specificity of human immunodeficiency virus type 1 protease.
    You L; Garwicz D; Rögnvaldsson T
    J Virol; 2005 Oct; 79(19):12477-86. PubMed ID: 16160175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deconvolving multiplexed protease signatures with substrate reduction and activity clustering.
    Zhuang Q; Holt BA; Kwong GA; Qiu P
    PLoS Comput Biol; 2019 Sep; 15(9):e1006909. PubMed ID: 31479443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites.
    Song J; Tan H; Perry AJ; Akutsu T; Webb GI; Whisstock JC; Pike RN
    PLoS One; 2012; 7(11):e50300. PubMed ID: 23209700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Commercial proteases: present and future.
    Li Q; Yi L; Marek P; Iverson BL
    FEBS Lett; 2013 Apr; 587(8):1155-63. PubMed ID: 23318711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Procleave: Predicting Protease-specific Substrate Cleavage Sites by Combining Sequence and Structural Information.
    Li F; Leier A; Liu Q; Wang Y; Xiang D; Akutsu T; Webb GI; Smith AI; Marquez-Lago T; Li J; Song J
    Genomics Proteomics Bioinformatics; 2020 Feb; 18(1):52-64. PubMed ID: 32413515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A look inside HIV resistance through retroviral protease interaction maps.
    Kontijevskis A; Prusis P; Petrovska R; Yahorava S; Mutulis F; Mutule I; Komorowski J; Wikberg JE
    PLoS Comput Biol; 2007 Mar; 3(3):e48. PubMed ID: 17352531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HIV-1 protease cleavage site prediction based on amino acid property.
    Niu B; Lu L; Liu L; Gu TH; Feng KY; Lu WC; Cai YD
    J Comput Chem; 2009 Jan; 30(1):33-9. PubMed ID: 18496789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational proteomics analysis of HIV-1 protease interactome.
    Kontijevskis A; Wikberg JE; Komorowski J
    Proteins; 2007 Jul; 68(1):305-12. PubMed ID: 17427231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Twenty years of bioinformatics research for protease-specific substrate and cleavage site prediction: a comprehensive revisit and benchmarking of existing methods.
    Li F; Wang Y; Li C; Marquez-Lago TT; Leier A; Rawlings ND; Haffari G; Revote J; Akutsu T; Chou KC; Purcell AW; Pike RN; Webb GI; Ian Smith A; Lithgow T; Daly RJ; Whisstock JC; Song J
    Brief Bioinform; 2019 Nov; 20(6):2150-2166. PubMed ID: 30184176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protease specificity profiling by tandem mass spectrometry using proteome-derived peptide libraries.
    Schilling O; auf dem Keller U; Overall CM
    Methods Mol Biol; 2011; 753():257-72. PubMed ID: 21604128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disentanglement of protease substrate repertoires.
    Van Damme P; Vandekerckhove J; Gevaert K
    Biol Chem; 2008 Apr; 389(4):371-81. PubMed ID: 18208357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current and prospective applications of non-proteinogenic amino acids in profiling of proteases substrate specificity.
    Kasperkiewicz P; Gajda AD; Drąg M
    Biol Chem; 2012 Sep; 393(9):843-51. PubMed ID: 22944686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixture-based peptide libraries for identifying protease cleavage motifs.
    Turk BE
    Methods Mol Biol; 2009; 539():79-91. PubMed ID: 19377969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of efficiently cleaved substrates for HIV-1 protease using a phage display library and use in inhibitor development.
    Beck ZQ; Hervio L; Dawson PE; Elder JH; Madison EL
    Virology; 2000 Sep; 274(2):391-401. PubMed ID: 10964781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing Protease Specificity: How Many Substrates Do We Need?
    Schauperl M; Fuchs JE; Waldner BJ; Huber RG; Kramer C; Liedl KR
    PLoS One; 2015; 10(11):e0142658. PubMed ID: 26559682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cleavage entropy as quantitative measure of protease specificity.
    Fuchs JE; von Grafenstein S; Huber RG; Margreiter MA; Spitzer GM; Wallnoefer HG; Liedl KR
    PLoS Comput Biol; 2013 Apr; 9(4):e1003007. PubMed ID: 23637583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of protease activity in cells and animals.
    Verdoes M; Verhelst SH
    Biochim Biophys Acta; 2016 Jan; 1864(1):130-42. PubMed ID: 25960278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.