These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
536 related articles for article (PubMed ID: 17621303)
1. How do shotgun proteomics algorithms identify proteins? Marcotte EM Nat Biotechnol; 2007 Jul; 25(7):755-7. PubMed ID: 17621303 [No Abstract] [Full Text] [Related]
2. Shotgun proteomics: tools for the analysis of complex biological systems. Wu CC; MacCoss MJ Curr Opin Mol Ther; 2002 Jun; 4(3):242-50. PubMed ID: 12139310 [TBL] [Abstract][Full Text] [Related]
3. Bioinformatics challenges in mass spectrometry-driven proteomics. Martens L Methods Mol Biol; 2011; 753():359-71. PubMed ID: 21604135 [TBL] [Abstract][Full Text] [Related]
4. A novel strategy using MASCOT Distiller for analysis of cleavable isotope-coded affinity tag data to quantify protein changes in plasma. Leung KY; Lescuyer P; Campbell J; Byers HL; Allard L; Sanchez JC; Ward MA Proteomics; 2005 Aug; 5(12):3040-4. PubMed ID: 16041675 [TBL] [Abstract][Full Text] [Related]
5. Analysis of mass spectrometry data in proteomics. Matthiesen R; Jensen ON Methods Mol Biol; 2008; 453():105-22. PubMed ID: 18712299 [TBL] [Abstract][Full Text] [Related]
6. STEM: a software tool for large-scale proteomic data analyses. Shinkawa T; Taoka M; Yamauchi Y; Ichimura T; Kaji H; Takahashi N; Isobe T J Proteome Res; 2005; 4(5):1826-31. PubMed ID: 16212438 [TBL] [Abstract][Full Text] [Related]
7. Proteomics-grade de novo sequencing approach. Savitski MM; Nielsen ML; Kjeldsen F; Zubarev RA J Proteome Res; 2005; 4(6):2348-54. PubMed ID: 16335984 [TBL] [Abstract][Full Text] [Related]
8. Using cross-correlation normalized for peptide length to optimize peptide identification in shotgun proteomics. Yang B; Ying W; Gong Y; Zhang Y; Cai Y; Dong H; Qian X Rapid Commun Mass Spectrom; 2005; 19(20):2983-5. PubMed ID: 16178048 [No Abstract] [Full Text] [Related]
10. Elective affinities--bioinformatic analysis of proteomic mass spectrometry data. Li X; Pizarro A; Grosser T Arch Physiol Biochem; 2009 Dec; 115(5):311-9. PubMed ID: 19911947 [TBL] [Abstract][Full Text] [Related]
11. Phosphoproteomics toolbox: computational biology, protein chemistry and mass spectrometry. Hjerrild M; Gammeltoft S FEBS Lett; 2006 Sep; 580(20):4764-70. PubMed ID: 16914146 [TBL] [Abstract][Full Text] [Related]
12. Bioinformatics in mass spectrometry data analysis for proteomics studies. Cristoni S; Bernardi LR Expert Rev Proteomics; 2004 Dec; 1(4):469-83. PubMed ID: 15966842 [TBL] [Abstract][Full Text] [Related]
13. Re-fraction: a machine learning approach for deterministic identification of protein homologues and splice variants in large-scale MS-based proteomics. Yang P; Humphrey SJ; Fazakerley DJ; Prior MJ; Yang G; James DE; Yang JY J Proteome Res; 2012 May; 11(5):3035-45. PubMed ID: 22428558 [TBL] [Abstract][Full Text] [Related]
14. Supervised feature selection in mass spectrometry-based proteomic profiling by blockwise boosting. Gertheiss J; Tutz G Bioinformatics; 2009 Apr; 25(8):1076-7. PubMed ID: 19233895 [TBL] [Abstract][Full Text] [Related]
15. An introduction to proteome bioinformatics. Jones AR; Hubbard SJ Methods Mol Biol; 2010; 604():1-5. PubMed ID: 20013360 [TBL] [Abstract][Full Text] [Related]
17. PCHM: A bioinformatic resource for high-throughput human mitochondrial proteome searching and comparison. Kim T; Kim E; Park SJ; Joo H Comput Biol Med; 2009 Aug; 39(8):689-96. PubMed ID: 19541297 [TBL] [Abstract][Full Text] [Related]