These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1334 related articles for article (PubMed ID: 17621469)
1. Multiple imputation of discrete and continuous data by fully conditional specification. van Buuren S Stat Methods Med Res; 2007 Jun; 16(3):219-42. PubMed ID: 17621469 [TBL] [Abstract][Full Text] [Related]
3. Multiple imputation for missing data: fully conditional specification versus multivariate normal imputation. Lee KJ; Carlin JB Am J Epidemiol; 2010 Mar; 171(5):624-32. PubMed ID: 20106935 [TBL] [Abstract][Full Text] [Related]
4. Missing values in longitudinal dietary data: a multiple imputation approach based on a fully conditional specification. Nevalainen J; Kenward MG; Virtanen SM Stat Med; 2009 Dec; 28(29):3657-69. PubMed ID: 19757484 [TBL] [Abstract][Full Text] [Related]
5. Multiple imputation for handling missing outcome data when estimating the relative risk. Sullivan TR; Lee KJ; Ryan P; Salter AB BMC Med Res Methodol; 2017 Sep; 17(1):134. PubMed ID: 28877666 [TBL] [Abstract][Full Text] [Related]
6. Missing item imputation for quality-of-life instruments with application to asthma quality-of-life questionnaires. Wang J; Rapatz G; Lowy A; Olson S; Kuebler J Pharm Stat; 2009; 8(1):73-83. PubMed ID: 18383560 [TBL] [Abstract][Full Text] [Related]
7. Marginal analysis of incomplete longitudinal binary data: a cautionary note on LOCF imputation. Cook RJ; Zeng L; Yi GY Biometrics; 2004 Sep; 60(3):820-8. PubMed ID: 15339307 [TBL] [Abstract][Full Text] [Related]
8. Review and evaluation of imputation methods for multivariate longitudinal data with mixed-type incomplete variables. Cao Y; Allore H; Vander Wyk B; Gutman R Stat Med; 2022 Dec; 41(30):5844-5876. PubMed ID: 36220138 [TBL] [Abstract][Full Text] [Related]
9. A comparison of multiple imputation methods for handling missing values in longitudinal data in the presence of a time-varying covariate with a non-linear association with time: a simulation study. De Silva AP; Moreno-Betancur M; De Livera AM; Lee KJ; Simpson JA BMC Med Res Methodol; 2017 Jul; 17(1):114. PubMed ID: 28743256 [TBL] [Abstract][Full Text] [Related]
10. Comparison of methods for imputing ordinal data using multivariate normal imputation: a case study of non-linear effects in a large cohort study. Lee KJ; Galati JC; Simpson JA; Carlin JB Stat Med; 2012 Dec; 31(30):4164-74. PubMed ID: 22826110 [TBL] [Abstract][Full Text] [Related]
11. Advanced statistics: missing data in clinical research--part 1: an introduction and conceptual framework. Haukoos JS; Newgard CD Acad Emerg Med; 2007 Jul; 14(7):662-8. PubMed ID: 17538078 [TBL] [Abstract][Full Text] [Related]
12. [Multiple imputation of missing at random data: General points and presentation of a Monte-Carlo method]. Cottrell G; Cot M; Mary JY Rev Epidemiol Sante Publique; 2009 Oct; 57(5):361-72. PubMed ID: 19674855 [TBL] [Abstract][Full Text] [Related]
13. Multiple imputation methods for handling missing values in a longitudinal categorical variable with restrictions on transitions over time: a simulation study. De Silva AP; Moreno-Betancur M; De Livera AM; Lee KJ; Simpson JA BMC Med Res Methodol; 2019 Jan; 19(1):14. PubMed ID: 30630434 [TBL] [Abstract][Full Text] [Related]
14. Just-identified versus overidentified two-level hierarchical linear models with missing data. Shin Y; Raudenbush SW Biometrics; 2007 Dec; 63(4):1262-8. PubMed ID: 17501944 [TBL] [Abstract][Full Text] [Related]
15. Extensions of the penalized spline of propensity prediction method of imputation. Zhang G; Little R Biometrics; 2009 Sep; 65(3):911-8. PubMed ID: 19053998 [TBL] [Abstract][Full Text] [Related]
16. Robustness of a parametric model for informatively censored bivariate longitudinal data under misspecification of its distributional assumptions: A simulation study. Pantazis N; Touloumi G Stat Med; 2007 Dec; 26(30):5473-85. PubMed ID: 18058854 [TBL] [Abstract][Full Text] [Related]
17. A comparison of multiple imputation methods for missing data in longitudinal studies. Huque MH; Carlin JB; Simpson JA; Lee KJ BMC Med Res Methodol; 2018 Dec; 18(1):168. PubMed ID: 30541455 [TBL] [Abstract][Full Text] [Related]
18. Imputation strategies for blood pressure data nonignorably missing due to medication use. Cook NR Clin Trials; 2006; 3(5):411-20. PubMed ID: 17060215 [TBL] [Abstract][Full Text] [Related]
19. Multiple imputation for missing data via sequential regression trees. Burgette LF; Reiter JP Am J Epidemiol; 2010 Nov; 172(9):1070-6. PubMed ID: 20841346 [TBL] [Abstract][Full Text] [Related]
20. Imputation strategies for missing continuous outcomes in cluster randomized trials. Taljaard M; Donner A; Klar N Biom J; 2008 Jun; 50(3):329-45. PubMed ID: 18537126 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]