BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 17621975)

  • 1. [Role of cooperative cell movements and mechano-geometric constrains in patterning of axial rudiments in Xenopus laevis embryos].
    Belousov LV; Korvin-Pavlovskaia EG; Luchinskaia NN; Kornikova ES
    Ontogenez; 2007; 38(3):192-204. PubMed ID: 17621975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Variation and asymmetry of axial rudiments of Xenopus laevis embryos in response to a disturbance of cell movements and tension fields in the marginal gastrula].
    Ermakov AS; Beloysov LV
    Ontogenez; 1998; 29(1):38-46. PubMed ID: 9541928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Mechanodependent cell movements in the axial rudiments of Xenopus gastrulae].
    Troshina TG; Belousov LV
    Ontogenez; 2009; 40(2):148-53. PubMed ID: 19405450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Mechanically dependent heterotopias of the axial rudiments in clawed toad embryos].
    Belousov LV; Luchinskaia NN
    Ontogenez; 1995; 26(3):213-22. PubMed ID: 7666998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle specification in the Xenopus laevis gastrula-stage embryo.
    Wunderlich K; Gustin JK; Domingo CR
    Dev Dyn; 2005 Aug; 233(4):1348-58. PubMed ID: 15965978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of relaxation of mechanical tensions upon the early morphogenesis of Xenopus laevis embryos.
    Beloussov LV; Lakirev AV; Naumidi II; Novoselov VV
    Int J Dev Biol; 1990 Dec; 34(4):409-19. PubMed ID: 2288863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The dependence of the differentiation potentials of fragments of the marginal zone in early gastrulas of the clawed toad on their morphogenetic movements].
    Belousov LV; Snetkova EV
    Ontogenez; 1994; 25(2):63-71. PubMed ID: 8190451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular mechanism underlying neural convergent extension in Xenopus laevis embryos.
    Elul T; Koehl MA; Keller R
    Dev Biol; 1997 Nov; 191(2):243-58. PubMed ID: 9398438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatially distinct domains of cell behavior in the zebrafish organizer region.
    D'Amico LA; Cooper MS
    Biochem Cell Biol; 1997; 75(5):563-77. PubMed ID: 9551180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dorsalization and neural induction: properties of the organizer in Xenopus laevis.
    Smith JC; Slack JM
    J Embryol Exp Morphol; 1983 Dec; 78():299-317. PubMed ID: 6663230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterning and tissue movements in a novel explant preparation of the marginal zone of Xenopus laevis.
    Davidson LA; Keller R; DeSimone D
    Gene Expr Patterns; 2004 Jul; 4(4):457-66. PubMed ID: 15183313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gastrulation in amphibian embryos, regarded as a succession of biomechanical feedback events.
    Beloussov LV; Luchinskaya NN; Ermakov AS; Glagoleva NS
    Int J Dev Biol; 2006; 50(2-3):113-22. PubMed ID: 16479480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell number in relation to primary pattern formation in the embryo of Xenopus laevis. II. Sequential cell recruitment, and control of the cell cycle, during mesoderm formation.
    Cooke J
    J Embryol Exp Morphol; 1979 Oct; 53():269-89. PubMed ID: 536690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A comparative analysis of notochord formation in amphibian embryos].
    Novoselov VV
    Ontogenez; 1992; 23(6):624-31. PubMed ID: 1294926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuro-mesodermal patterns in artificially deformed embryonic explants: a role for mechano-geometry in tissue differentiation.
    Kornikova ES; Troshina TG; Kremnyov SV; Beloussov LV
    Dev Dyn; 2010 Mar; 239(3):885-96. PubMed ID: 20140909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Role of Mechano-Dependent Cell Movements in the Establishment of Spatial Organization of Axial Rudiments in Xenopus laevis Embryos].
    Bredov DV; Evstifeeva AU
    Ontogenez; 2017; 48(1):21-7. PubMed ID: 30272919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disruption of gastrulation movements in Xenopus by a dominant-negative mutant for C-cadherin.
    Lee CH; Gumbiner BM
    Dev Biol; 1995 Oct; 171(2):363-73. PubMed ID: 7556920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal and spatial patterning of axial myotome fibers in Xenopus laevis.
    Krneta-Stankic V; Sabillo A; Domingo CR
    Dev Dyn; 2010 Apr; 239(4):1162-77. PubMed ID: 20235228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Morphomechanical Factors in Gastrulation Process and Differentiation of Embryonic Tissue of Xenopus laevis].
    Vasilegina YI; Kremnev SV; Nikishin DA
    Ontogenez; 2017; 48(1):39-45. PubMed ID: 30272924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of the dorsal marginal zone in Xenopus laevis analyzed by time-lapse microscopic magnetic resonance imaging.
    Papan C; Boulat B; Velan SS; Fraser SE; Jacobs RE
    Dev Biol; 2007 May; 305(1):161-71. PubMed ID: 17368611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.