BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 17622285)

  • 1. Activation of the A1 adenosine receptor increases insulin-stimulated glucose transport in isolated rat soleus muscle.
    Thong FS; Lally JS; Dyck DJ; Greer F; Bonen A; Graham TE
    Appl Physiol Nutr Metab; 2007 Aug; 32(4):701-10. PubMed ID: 17622285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of adenosine A1 receptors by drugs to lower plasma glucose in streptozotocin-induced diabetic rats.
    Cheng JT; Chi TC; Liu IM
    Auton Neurosci; 2000 Oct; 83(3):127-33. PubMed ID: 11593763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro analysis of the glucose-transport system in GLUT4-null skeletal muscle.
    Ryder JW; Kawano Y; Chibalin AV; Rincón J; Tsao TS; Stenbit AE; Combatsiaris T; Yang J; Holman GD; Charron MJ; Zierath JR
    Biochem J; 1999 Sep; 342 ( Pt 2)(Pt 2):321-8. PubMed ID: 10455018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in glucose transport and protein kinase Cbeta(2) in rat skeletal muscle induced by hyperglycaemia.
    Kawano Y; Rincon J; Soler A; Ryder JW; Nolte LA; Zierath JR; Wallberg-Henriksson H
    Diabetologia; 1999 Sep; 42(9):1071-9. PubMed ID: 10447518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of adenosine decreases the responsiveness of muscle glucose transport to insulin and contractions.
    Han DH; Hansen PA; Nolte LA; Holloszy JO
    Diabetes; 1998 Nov; 47(11):1671-5. PubMed ID: 9792534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viability of the isolated soleus muscle during long-term incubation.
    Alkhateeb H; Chabowski A; Bonen A
    Appl Physiol Nutr Metab; 2006 Aug; 31(4):467-76. PubMed ID: 16900237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1-[N, O-bis-(5-isoquinolinesulphonyl)-N-methyl-L-tyrosyl]-4- phenylpiperazine (KN-62), an inhibitor of calcium-dependent camodulin protein kinase II, inhibits both insulin- and hypoxia-stimulated glucose transport in skeletal muscle.
    Brozinick JT; Reynolds TH; Dean D; Cartee G; Cushman SW
    Biochem J; 1999 May; 339 ( Pt 3)(Pt 3):533-40. PubMed ID: 10215590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence against a direct effect of leptin on glucose transport in skeletal muscle and adipocytes.
    Zierath JR; Frevert EU; Ryder JW; Berggren PO; Kahn BB
    Diabetes; 1998 Jan; 47(1):1-4. PubMed ID: 9421367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro simulation of calorie restriction-induced decline in glucose and insulin leads to increased insulin-stimulated glucose transport in rat skeletal muscle.
    Arias EB; Cartee GD
    Am J Physiol Endocrinol Metab; 2007 Dec; 293(6):E1782-8. PubMed ID: 17925453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of adenosine in regulating glucose uptake during contractions and hypoxia in rat skeletal muscle.
    Derave W; Hespel P
    J Physiol; 1999 Feb; 515 ( Pt 1)(Pt 1):255-63. PubMed ID: 9925895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adenosine receptors mediate synergistic stimulation of glucose uptake and transport by insulin and by contractions in rat skeletal muscle.
    Vergauwen L; Hespel P; Richter EA
    J Clin Invest; 1994 Mar; 93(3):974-81. PubMed ID: 8132783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epinephrine translocates GLUT-4 but inhibits insulin-stimulated glucose transport in rat muscle.
    Han XX; Bonen A
    Am J Physiol; 1998 Apr; 274(4):E700-7. PubMed ID: 9575832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of in vitro antagonism of endocannabinoid-1 receptors on the glucose transport system in normal and insulin-resistant rat skeletal muscle.
    Lindborg KA; Teachey MK; Jacob S; Henriksen EJ
    Diabetes Obes Metab; 2010 Aug; 12(8):722-30. PubMed ID: 20590750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of phospholipase C inhibition on insulin-stimulated glucose transport in skeletal muscle.
    Wright DC; Craig BW; Fick CA; Lim KI
    Metabolism; 2002 Mar; 51(3):271-3. PubMed ID: 11887159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of epinephrine on insulin-stimulated glucose uptake and GLUT-4 phosphorylation in muscle.
    Lee AD; Hansen PA; Schluter J; Gulve EA; Gao J; Holloszy JO
    Am J Physiol; 1997 Sep; 273(3 Pt 1):C1082-7. PubMed ID: 9316430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leucine modulates contraction- and insulin-stimulated glucose transport and upstream signaling events in rat skeletal muscle.
    Iwanaka N; Egawa T; Satoubu N; Karaike K; Ma X; Masuda S; Hayashi T
    J Appl Physiol (1985); 2010 Feb; 108(2):274-82. PubMed ID: 19940100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced basal and lipopolysaccharide-stimulated adenosine A1 receptor expression in the brain of nuclear factor-kappaB p50-/- mice.
    Jhaveri KA; Reichensperger J; Toth LA; Sekino Y; Ramkumar V
    Neuroscience; 2007 Apr; 146(1):415-26. PubMed ID: 17350174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of muscle insulin resistance by selective inhibition of GSK-3 in Zucker diabetic fatty rats.
    Henriksen EJ; Kinnick TR; Teachey MK; O'Keefe MP; Ring D; Johnson KW; Harrison SD
    Am J Physiol Endocrinol Metab; 2003 May; 284(5):E892-900. PubMed ID: 12517738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 5'-aminoimidazole-4-carboxyamide-ribonucleoside-activated glucose transport is not prevented by nitric oxide synthase inhibition in rat isolated skeletal muscle.
    Stephens TJ; Canny BJ; Snow RJ; McConell GK
    Clin Exp Pharmacol Physiol; 2004 Jul; 31(7):419-23. PubMed ID: 15236627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of exercise training on skeletal muscle glucose uptake and transport.
    Etgen GJ; Brozinick JT; Kang HY; Ivy JL
    Am J Physiol; 1993 Mar; 264(3 Pt 1):C727-33. PubMed ID: 8460676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.