BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 17623026)

  • 1. Spore dipicolinic acid contents used for estimating the number of endospores in sediments.
    Fichtel J; Köster J; Rullkötter J; Sass H
    FEMS Microbiol Ecol; 2007 Sep; 61(3):522-32. PubMed ID: 17623026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A highly sensitive HPLC method for determination of nanomolar concentrations of dipicolinic acid, a characteristic constituent of bacterial endospores.
    Fichtel J; Köster J; Scholz-Böttcher B; Sass H; Rullkötter J
    J Microbiol Methods; 2007 Aug; 70(2):319-27. PubMed ID: 17573136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of viable endospores from a Greenland ice core.
    Yung PT; Shafaat HS; Connon SA; Ponce A
    FEMS Microbiol Ecol; 2007 Feb; 59(2):300-6. PubMed ID: 17313579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endospore dipicolinic acid detection during Bacillus thuringiensis culture.
    Navarro AK; Peña A; Pérez-Guevara F
    Lett Appl Microbiol; 2008 Feb; 46(2):166-70. PubMed ID: 18069985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of endospores in ancient permafrost using time-resolved terbium luminescence.
    Lalla SJ; Kaneshige KR; Miller DR; Mackelprang R; Mogul R
    Anal Biochem; 2021 Jan; 612():113957. PubMed ID: 32961249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dipicolinic acid (DPA) assay revisited and appraised for spore detection.
    Hindle AA; Hall EA
    Analyst; 1999 Nov; 124(11):1599-604. PubMed ID: 10746319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitive quantification of dipicolinic acid from bacterial endospores in soils and sediments.
    Rattray JE; Chakraborty A; Li C; Elizondo G; John N; Wong M; Radović JR; Oldenburg TBP; Hubert CRJ
    Environ Microbiol; 2021 Mar; 23(3):1397-1406. PubMed ID: 33264453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of nonlinear quenching of terbium(III):dipicolinic acid complex fluorescence by chelators and chelate-conjugated macromolecules.
    Sanny CG; Price JA
    Bioconjug Chem; 1999; 10(1):141-5. PubMed ID: 9893976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Terbium chloride influences Clostridium difficile spore germination.
    Shrestha R; Sorg JA
    Anaerobe; 2019 Aug; 58():80-88. PubMed ID: 30926439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mid-ultraviolet light-emitting diode detects dipicolinic acid.
    Li Q; Dasgupta PK; Temkin H; Crawford MH; Fischer AJ; Allerman AA; Bogart KH; Lee SR
    Appl Spectrosc; 2004 Nov; 58(11):1360-3. PubMed ID: 15606942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial spore detection by [Tb3+(macrocycle)(dipicolinate)] luminescence.
    Cable ML; Kirby JP; Sorasaenee K; Gray HB; Ponce A
    J Am Chem Soc; 2007 Feb; 129(6):1474-5. PubMed ID: 17243674
    [No Abstract]   [Full Text] [Related]  

  • 12. Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment.
    Lomstein BA; Langerhuus AT; D'Hondt S; Jørgensen BB; Spivack AJ
    Nature; 2012 Mar; 484(7392):101-4. PubMed ID: 22425999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fourier transform infrared reflectance microspectroscopy study of Bacillus subtilis engineered without dipicolinic acid: the contribution of calcium dipicolinate to the mid-infrared absorbance of Bacillus subtilis endospores.
    Perkins DL; Lovell CR; Bronk BV; Setlow B; Setlow P; Myrick ML
    Appl Spectrosc; 2005 Jul; 59(7):893-6. PubMed ID: 16053560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ surface-etched bacterial spore detection using dipicolinic acid-europium-silica nanoparticle bioreporters.
    Smith CB; Anderson JE; Edwards JD; Kam KC
    Appl Spectrosc; 2011 Aug; 65(8):866-75. PubMed ID: 21819776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxyapatite nanoparticle based fluorometric turn-on determination of dipicolinic acid, a biomarker of bacterial spores.
    Li Y; Li X; Wang D; Shen C; Yang M
    Mikrochim Acta; 2018 Aug; 185(9):435. PubMed ID: 30167800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring DPA release from a single germinating Bacillus subtilis endospore via surface-enhanced Raman scattering microscopy.
    Evanoff DD; Heckel J; Caldwell TP; Christensen KA; Chumanov G
    J Am Chem Soc; 2006 Oct; 128(39):12618-9. PubMed ID: 17002334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of nisin and reutericyclin on resistance of endospores of Clostridium spp. to heat and high pressure.
    Hofstetter S; Gebhardt D; Ho L; Gänzle M; McMullen LM
    Food Microbiol; 2013 May; 34(1):46-51. PubMed ID: 23498177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly sensitive detection of dipicolinic acid with a water-dispersible terbium-metal organic framework.
    Bhardwaj N; Bhardwaj S; Mehta J; Kim KH; Deep A
    Biosens Bioelectron; 2016 Dec; 86():799-804. PubMed ID: 27479046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photosensitization of DNA by dipicolinic acid, a major component of spores of Bacillus species.
    Douki T; Setlow B; Setlow P
    Photochem Photobiol Sci; 2005 Aug; 4(8):591-7. PubMed ID: 16052264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined scanning transmission X-ray and electron microscopy for the characterization of bacterial endospores.
    Jamroskovic J; Shao PP; Suvorova E; Barak I; Bernier-Latmani R
    FEMS Microbiol Lett; 2014 Sep; 358(2):188-93. PubMed ID: 25048294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.