These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 17623035)

  • 61. A detailed comparison of the cytoarchitectonic and myeloarchitectonic maps of the human neocortex produced by the Vogt-Vogt school.
    Nieuwenhuys R; Broere CAJ
    Brain Struct Funct; 2020 Dec; 225(9):2717-2733. PubMed ID: 33141295
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Agranular frontal cortical microcircuit underlying cognitive control in macaques.
    Herrera B; Schall JD; Riera JJ
    Front Neural Circuits; 2024; 18():1389110. PubMed ID: 38601266
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Parcellation of human mesial area 6: cytoarchitectonic evidence for three separate areas.
    Vorobiev V; Govoni P; Rizzolatti G; Matelli M; Luppino G
    Eur J Neurosci; 1998 Jun; 10(6):2199-203. PubMed ID: 9753106
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The cortical spectrum: A robust structural continuum in primate cerebral cortex revealed by histological staining and magnetic resonance imaging.
    John YJ; Zikopoulos B; García-Cabezas MÁ; Barbas H
    Front Neuroanat; 2022; 16():897237. PubMed ID: 36157324
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A prototype symbolic model of canonical functional neuroanatomy of the motor system.
    Talos IF; Rubin DL; Halle M; Musen M; Kikinis R
    J Biomed Inform; 2008 Apr; 41(2):251-63. PubMed ID: 18164666
    [TBL] [Abstract][Full Text] [Related]  

  • 66. [Architectonics of the human frontal lobe of the brain. With a demonstration of the principles of its formation as a reflection of phylogenetic differentiation of the cerebral cortex].
    SANIDES F
    Monogr Gesamtgeb Neurol Psychiatr; 1962; 98():1-201. PubMed ID: 13976313
    [No Abstract]   [Full Text] [Related]  

  • 67. Features of the architectonics of motor speech fields of the brain of gifted people in relation to the study of the individual variability of the structure of the human brain.
    Bogolepova IN
    Neurosci Behav Physiol; 1996; 26(2):189-93. PubMed ID: 8782223
    [No Abstract]   [Full Text] [Related]  

  • 68. [THE ARCHITECTONICS OF THE CEREBRAL CORTEX AND THE PROBLEM OF LOCALIZATION OF FUNCTIONS].
    FILIMONOV IN
    Zh Nevropatol Psikhiatr Im S S Korsakova; 1964; 64():8-17. PubMed ID: 14141413
    [No Abstract]   [Full Text] [Related]  

  • 69. Dorsal column. From the archives.
    Compston A
    Brain; 2014 Apr; 137(Pt 4):1266-71. PubMed ID: 24783240
    [No Abstract]   [Full Text] [Related]  

  • 70. Dendritic spines in the dog frontal cortex.
    Pogosyan VI
    Neurosci Behav Physiol; 1972; 5(4):306-12. PubMed ID: 4679515
    [No Abstract]   [Full Text] [Related]  

  • 71. The motor functions of the agranular frontal cortex.
    DENNY-BROWN D; BOTTERELL EH
    Res Publ Assoc Res Nerv Ment Dis; 1948; 27 (1 vol.)():235-345. PubMed ID: 18122905
    [No Abstract]   [Full Text] [Related]  

  • 72. [Objective registration of myelo-architectonics of the cerebral cortex].
    Hopf A
    Naturwissenschaften; 1965 Aug; 52(16):479. PubMed ID: 5862712
    [No Abstract]   [Full Text] [Related]  

  • 73. Corrigendum to "Surface based analysis of diffusion orientation for identifying architectonic domains in the in vivo human cortex" [NeuroImage 69 (2013) 87-100].
    McNab JA; Polimeni JR; Wang R; Augustinack JC; Fujimoto K; Stevens A; Triantafyllou C; Janssens T; Farivar R; Folkerth RD; Vanduffel W; Wald LL
    Neuroimage; 2013 Nov; 81():505. PubMed ID: 30180375
    [No Abstract]   [Full Text] [Related]  

  • 74. EXISTENCE OF FUNCTIONALLY INDEPENDENT AUTOMORPHIC FUNCTIONS.
    Bochner S; Gunning RC
    Proc Natl Acad Sci U S A; 1955 Oct; 41(10):746-52. PubMed ID: 16589741
    [No Abstract]   [Full Text] [Related]  

  • 75. Gradient Organization of Space, Time, and Numbers in the Brain: A Meta-analysis of Neuroimaging Studies.
    Cona G; Wiener M; Allegrini F; Scarpazza C
    Neuropsychol Rev; 2023 Aug; ():. PubMed ID: 37594695
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The relevance of the unique anatomy of the human prefrontal operculum to the emergence of speech.
    Amiez C; Verstraete C; Sallet J; Hadj-Bouziane F; Ben Hamed S; Meguerditchian A; Procyk E; Wilson CRE; Petrides M; Sherwood CC; Hopkins WD
    Commun Biol; 2023 Jul; 6(1):693. PubMed ID: 37407769
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A revised perspective on the evolution of the lateral frontal cortex in primates.
    Amiez C; Sallet J; Giacometti C; Verstraete C; Gandaux C; Morel-Latour V; Meguerditchian A; Hadj-Bouziane F; Ben Hamed S; Hopkins WD; Procyk E; Wilson CRE; Petrides M
    Sci Adv; 2023 May; 9(20):eadf9445. PubMed ID: 37205762
    [TBL] [Abstract][Full Text] [Related]  

  • 78. MEG source imaging detects optogenetically-induced activity in cortical and subcortical networks.
    Alberto GE; Stapleton-Kotloski JR; Klorig DC; Rogers ER; Constantinidis C; Daunais JB; Godwin DW
    Nat Commun; 2021 Sep; 12(1):5259. PubMed ID: 34489452
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Differential NPY-Y1 Receptor Density in the Motor Cortex of ALS Patients and Familial Model of ALS.
    Clark CM; Clark RM; Hoyle JA; Chuckowree JA; McLean CA; Dickson TC
    Brain Sci; 2021 Jul; 11(8):. PubMed ID: 34439588
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Microstimulation of the Premotor Cortex of the Cat Produces Phase-Dependent Changes in Locomotor Activity.
    Fortier-Lebel N; Nakajima T; Yahiaoui N; Drew T
    Cereb Cortex; 2021 Oct; 31(12):5411-5434. PubMed ID: 34289039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.