These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 1762309)

  • 21. Effects of carbonic anhydrase inhibitors on basolateral base transport of rabbit proximal straight tubule.
    Sasaki S; Marumo F
    Am J Physiol; 1989 Dec; 257(6 Pt 2):F947-52. PubMed ID: 2603961
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phosphate transport in the proximal convolution of the rat kidney. III. Effect of extracellular and intracellular pH.
    Ullrich KJ; Rumrich G; Klöss S
    Pflugers Arch; 1978 Oct; 377(1):33-42. PubMed ID: 31597
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potassium permeability of luminal and peritubular membranes in the proximal tubule of bullfrog kidneys.
    Kubokawa M; Kubota T; Fujimoto M
    Jpn J Physiol; 1990; 40(5):613-34. PubMed ID: 2086984
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relationship between sodium and bicarbonate transport in the rat proximal convoluted tubule.
    Chan YL; Giebisch G
    Am J Physiol; 1981 Mar; 240(3):F222-30. PubMed ID: 7212069
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bicarbonate and ammonia transport in isolated perfused rat proximal straight tubules.
    Garvin JL; Knepper MA
    Am J Physiol; 1987 Aug; 253(2 Pt 2):F277-81. PubMed ID: 3618790
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism of basolateral membrane H+/OH-/HCO-3 transport in the rat proximal convoluted tubule. A sodium-coupled electrogenic process.
    Alpern RJ
    J Gen Physiol; 1985 Nov; 86(5):613-36. PubMed ID: 2999293
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SITS-sensitive basolateral anion current in rabbit proximal convoluted tubules.
    Kuwahara M; Rector FC; Berry CA
    Am J Physiol; 1988 Jun; 254(6 Pt 2):F828-36. PubMed ID: 2454583
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of barium and 5-(N-ethyl-N-isopropyl)-amiloride on proximal tubule ammonia transport.
    Simon EE; Merli C; Herndon J; Cragoe EJ; Hamm LL
    Am J Physiol; 1992 Jan; 262(1 Pt 2):F36-9. PubMed ID: 1733295
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bicarbonate transport mechanisms in the Ambystoma kidney proximal tubule: transepithelial potential measurements.
    Bock JF; Boulpaep EL
    Yale J Biol Med; 1990; 63(6):529-47. PubMed ID: 2092412
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphate deprivation inhibits NH4+ transport in OK cells.
    Chen JG; Kempson SA
    Biochim Biophys Acta; 1993 Jul; 1149(2):299-304. PubMed ID: 8323948
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bicarbonate absorption by rabbit cortical collecting tubules in vitro.
    McKinney TD; Burg MB
    Am J Physiol; 1978 Feb; 234(2):F141-5. PubMed ID: 623305
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Barium- or quinine-induced depolarization activates K+, Na+ and cationic conductances in frog proximal tubular cells.
    Discala F; Belachgar F; Planelles G; Hulin P; Anagnostopoulos T
    J Physiol; 1992 Mar; 448():525-37. PubMed ID: 1317443
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intracellular potentials in rabbit proximal tubules perfused in vitro.
    Biagi B; Kubota T; Sohtell M; Giebisch G
    Am J Physiol; 1981 Mar; 240(3):F200-10. PubMed ID: 7212067
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of intracellular sodium activity on the transport of glucose in proximal tubule of frog kidney.
    Lang F; Messner G; Wang W; Paulmichl M; Oberleithner H; Deetjen P
    Pflugers Arch; 1984 May; 401(1):14-21. PubMed ID: 6089087
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Millimolar amiloride concentrations block K conductance in proximal tubular cells.
    Discala F; Hulin P; Belachgar F; Planelles G; Edelman A; Anagnostopoulos T
    Br J Pharmacol; 1992 Oct; 107(2):532-8. PubMed ID: 1330183
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bicarbonate transport by isolated perfused rabbit proximal convoluted tubules.
    Burg M; Green N
    Am J Physiol; 1977 Oct; 233(4):F307-14. PubMed ID: 910955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of monovalent ions in the reabsorption of fluid by isolated perfused proximal renal tubules of the rabbit.
    Burg MB; Green N
    Kidney Int; 1976 Sep; 10(3):221-8. PubMed ID: 972442
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrical properties of Madin-Darby-canine-kidney cells. Effects of extracellular sodium and calcium.
    Paulmichl M; Friedrich F; Lang F
    Pflugers Arch; 1986 Sep; 407(3):258-63. PubMed ID: 3093972
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intracellular microelectrode characterization of the rabbit cortical collecting duct.
    Koeppen BM; Biagi BA; Giebisch GH
    Am J Physiol; 1983 Jan; 244(1):F35-47. PubMed ID: 6295184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Further studies of organic base secretion by rabbit proximal tubules.
    McKinney TD
    Am J Physiol; 1984 Mar; 246(3 Pt 2):F282-9. PubMed ID: 6703062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.