These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 17623100)

  • 21. Surface epitope variation via mosaic gene formation is potential key to long-term survival of Trypanosoma brucei.
    Kamper SM; Barbet AF
    Mol Biochem Parasitol; 1992 Jul; 53(1-2):33-44. PubMed ID: 1380125
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Machine learning techniques for the automated classification of adhesin-like proteins in the human protozoan parasite Trypanosoma cruzi.
    González AM; Azuaje FJ; Ramírez JL; da Silveira JF; Dorronsoro JR
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(4):695-702. PubMed ID: 19875867
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DNA metabolism and genetic diversity in Trypanosomes.
    Machado CR; Augusto-Pinto L; McCulloch R; Teixeira SM
    Mutat Res; 2006 Jan; 612(1):40-57. PubMed ID: 16040270
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-resolution profiling of linear B-cell epitopes from mucin-associated surface proteins (MASPs) of Trypanosoma cruzi during human infections.
    Durante IM; La Spina PE; Carmona SJ; Agüero F; Buscaglia CA
    PLoS Negl Trop Dis; 2017 Sep; 11(9):e0005986. PubMed ID: 28961244
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anatomy and evolution of telomeric and subtelomeric regions in the human protozoan parasite Trypanosoma cruzi.
    Moraes Barros RR; Marini MM; Antônio CR; Cortez DR; Miyake AM; Lima FM; Ruiz JC; Bartholomeu DC; Chiurillo MA; Ramirez JL; da Silveira JF
    BMC Genomics; 2012 Jun; 13():229. PubMed ID: 22681854
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel mechanism for control of antigenic variation in the haemagglutinin gene family of mycoplasma synoviae.
    Noormohammadi AH; Markham PF; Kanci A; Whithear KG; Browning GF
    Mol Microbiol; 2000 Feb; 35(4):911-23. PubMed ID: 10692167
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Repertoire, genealogy and genomic organization of cruzipain and homologous genes in Trypanosoma cruzi, T. cruzi-like and other trypanosome species.
    Lima L; Ortiz PA; da Silva FM; Alves JM; Serrano MG; Cortez AP; Alfieri SC; Buck GA; Teixeira MM
    PLoS One; 2012; 7(6):e38385. PubMed ID: 22685565
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distinct genomic organization, mRNA expression and cellular localization of members of two amastin sub-families present in Trypanosoma cruzi.
    Kangussu-Marcolino MM; de Paiva RM; Araújo PR; de Mendonça-Neto RP; Lemos L; Bartholomeu DC; Mortara RA; daRocha WD; Teixeira SM
    BMC Microbiol; 2013 Jan; 13():10. PubMed ID: 23327097
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The impact of mutation and gene conversion on the local diversification of antigen genes in African trypanosomes.
    Gjini E; Haydon DT; Barry JD; Cobbold CA
    Mol Biol Evol; 2012 Nov; 29(11):3321-31. PubMed ID: 22735079
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sequence diversity of the Trypanosoma cruzi complement regulatory protein family.
    Beucher M; Norris KA
    Infect Immun; 2008 Feb; 76(2):750-8. PubMed ID: 18070905
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genomic assemblies of newly sequenced Trypanosoma cruzi strains reveal new genomic expansion and greater complexity.
    Callejas-Hernández F; Rastrojo A; Poveda C; Gironès N; Fresno M
    Sci Rep; 2018 Oct; 8(1):14631. PubMed ID: 30279473
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular characterisation of Sarcocystis bovifelis, Sarcocystis bovini n. sp., Sarcocystis hirsuta and Sarcocystis cruzi from cattle (Bos taurus) and Sarcocystis sinensis from water buffaloes (Bubalus bubalis).
    Gjerde B
    Parasitol Res; 2016 Apr; 115(4):1473-92. PubMed ID: 26677095
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Revisiting the diffusion approximation to estimate evolutionary rates of gene family diversification.
    Gjini E; Haydon DT; David Barry J; Cobbold CA
    J Theor Biol; 2014 Jan; 341():111-22. PubMed ID: 24120993
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential accumulation of mutations localized in particular domains of the mucin genes expressed in the vertebrate host stage of Trypanosoma cruzi.
    Campo V; Di Noia JM; Buscaglia CA; Agüero F; Sánchez DO; Frasch AC
    Mol Biochem Parasitol; 2004 Jan; 133(1):81-91. PubMed ID: 14668015
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antigenic diversity by the recombination of pseudogenes.
    Thon G; Baltz T; Eisen H
    Genes Dev; 1989 Aug; 3(8):1247-54. PubMed ID: 2792762
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The high identity of the Trypanosoma cruzi Group-I of trans-sialidases points them as promising vaccine immunogens.
    Pacini MF; Perdomini A; Bulfoni Balbi C; Dinatale B; Herrera FE; Perez AR; Marcipar I
    Proteins; 2023 Oct; 91(10):1444-1460. PubMed ID: 37323089
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genomic variation of Trypanosoma cruzi: involvement of multicopy genes.
    Wagner W; So M
    Infect Immun; 1990 Oct; 58(10):3217-24. PubMed ID: 2169461
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Utility of the Trypanosoma cruzi sequence database for identification of potential vaccine candidates by in silico and in vitro screening.
    Bhatia V; Sinha M; Luxon B; Garg N
    Infect Immun; 2004 Nov; 72(11):6245-54. PubMed ID: 15501750
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.