These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 17623419)

  • 1. Optimum kinetic performance of open-tubular separations in microfluidic devices.
    Eghbali H; Desmet G
    J Sep Sci; 2007 Jul; 30(10):1377-97. PubMed ID: 17623419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geometry-independent plate height representation methods for the direct comparison of the kinetic performance of LC supports with a different size or morphology.
    Desmet G; Clicq D; Gzil P
    Anal Chem; 2005 Jul; 77(13):4058-70. PubMed ID: 15987111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental optimization of flow distributors for pressure-driven separations and reactions in flat-rectangular microchannels.
    Vangelooven J; Schlautman S; Detobel F; Gardeniers H; Desmet G
    Anal Chem; 2011 Jan; 83(2):467-77. PubMed ID: 21175164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrokinetic fluid control in two-dimensional planar microfluidic devices.
    Lerch MA; Jacobson SC
    Anal Chem; 2007 Oct; 79(19):7485-91. PubMed ID: 17718538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charged species transport, separation, and dispersion in nanoscale channels: autogenous electric field-flow fractionation.
    Griffiths SK; Nilson RH
    Anal Chem; 2006 Dec; 78(23):8134-41. PubMed ID: 17134150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microfluidic channel flow cell for electrochemical ESR.
    Wain AJ; Compton RG; Le Roux R; Matthews S; Yunus K; Fisher AC
    J Phys Chem B; 2006 Dec; 110(51):26040-4. PubMed ID: 17181255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pillar-structured microchannels for on-chip liquid chromatography: evaluation of the permeability and separation performance.
    De Pra M; De Malsche W; Desmet G; Schoenmakers PJ; Kok WT
    J Sep Sci; 2007 Jul; 30(10):1453-60. PubMed ID: 17623425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrodynamic resistance of single confined moving drops in rectangular microchannels.
    Vanapalli SA; Banpurkar AG; van den Ende D; Duits MH; Mugele F
    Lab Chip; 2009 Apr; 9(7):982-90. PubMed ID: 19294311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional protein separation in microfluidic devices.
    Chen H; Fan ZH
    Electrophoresis; 2009 Mar; 30(5):758-65. PubMed ID: 19197899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A theoretical and experimental study of the electrophoretic extraction of ions from a pressure driven flow in a microfluidic device.
    Reschke BR; Luo H; Schiffbauer J; Edwards BF; Timperman AT
    Lab Chip; 2009 Aug; 9(15):2203-11. PubMed ID: 19606297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass transfer in rectangular chromatographic channels.
    Poppe H
    J Chromatogr A; 2002 Mar; 948(1-2):3-17. PubMed ID: 12831178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of 120-nm deep channels for liquid chromatographic separations.
    Fekete V; Clicq D; De Malsche W; Gardeniers H; Desmet G
    J Chromatogr A; 2008 May; 1189(1-2):2-9. PubMed ID: 18037427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topographic structures and chromatographic supports in microfluidic separation devices.
    De Pra M; Kok WT; Schoenmakers PJ
    J Chromatogr A; 2008 Mar; 1184(1-2):560-72. PubMed ID: 18028936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer simulation and theory of the diffusion- and flow-induced concentration dispersion in microfluidic devices and HPLC systems based on rectangular microchannels.
    Morf WE; van der Wal PD; de Rooij NF
    Anal Chim Acta; 2008 Aug; 622(1-2):175-81. PubMed ID: 18602550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of channel position on sample confinement in two-dimensional planar microfluidic devices.
    Lerch MA; Hoffman MD; Jacobson SC
    Lab Chip; 2008 Feb; 8(2):316-22. PubMed ID: 18231672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic picoliter-scale translational spontaneous sample introduction for high-speed capillary electrophoresis.
    Zhang T; Fang Q; Du WB; Fu JL
    Anal Chem; 2009 May; 81(9):3693-8. PubMed ID: 19351143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gradient elution moving boundary electrophoresis with channel current detection.
    Ross D; Romantseva EF
    Anal Chem; 2009 Sep; 81(17):7326-35. PubMed ID: 19663449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluidic communication between multiple vertically segregated microfluidic channels connected by nanocapillary array membranes.
    Gong M; Flachsbart BR; Shannon MA; Bohn PW; Sweedler JV
    Electrophoresis; 2008 Mar; 29(6):1237-44. PubMed ID: 18288777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capillary flow enhancement in rectangular polymer microchannels with a deformable wall.
    Anoop R; Sen AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013024. PubMed ID: 26274286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of varying electroosmotic flow on the effective diffusion in electric field gradient separations.
    Maynes D; Tenny J; Webbd BW; Lee ML
    Electrophoresis; 2008 Feb; 29(3):549-60. PubMed ID: 18200632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.