These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Capillary electrophoresis of affinity complexes between subviral 80S particles of human rhinovirus and monoclonal antibody 2G2. Kremser L; Petsch M; Blaas D; Kenndler E Electrophoresis; 2006 Jul; 27(13):2630-7. PubMed ID: 16732623 [TBL] [Abstract][Full Text] [Related]
4. Characterization of rhinovirus subviral A particles via capillary electrophoresis, electron microscopy and gas phase electrophoretic mobility molecular analysis: part II. Subirats X; Weiss VU; Gösler I; Puls C; Limbeck A; Allmaier G; Kenndler E Electrophoresis; 2013 Jun; 34(11):1600-9. PubMed ID: 23483563 [TBL] [Abstract][Full Text] [Related]
5. Labeling of capsid proteins and genomic RNA of human rhinovirus with two different fluorescent dyes for selective detection by capillary electrophoresis. Kremser L; Petsch M; Blaas D; Kenndler E Anal Chem; 2004 Dec; 76(24):7360-5. PubMed ID: 15595880 [TBL] [Abstract][Full Text] [Related]
6. Characterization of rhinovirus subviral A particles via capillary electrophoresis, electron microscopy and gas-phase electrophoretic mobility molecular analysis: Part I. Weiss VU; Subirats X; Pickl-Herk A; Bilek G; Winkler W; Kumar M; Allmaier G; Blaas D; Kenndler E Electrophoresis; 2012 Jul; 33(12):1833-41. PubMed ID: 22740471 [TBL] [Abstract][Full Text] [Related]
7. Influence of detergent additives on mobility of native and subviral rhinovirus particles in capillary electrophoresis. Kremser L; Petsch M; Blaas D; Kenndler E Electrophoresis; 2006 Mar; 27(5-6):1112-21. PubMed ID: 16523456 [TBL] [Abstract][Full Text] [Related]
8. Fluorescence labeling of human rhinovirus capsid and analysis by capillary electrophoresis. Kremser L; Konecsni T; Blaas D; Kenndler E Anal Chem; 2004 Jul; 76(14):4175-81. PubMed ID: 15253660 [TBL] [Abstract][Full Text] [Related]
9. Binding of fluorescent dye to genomic RNA inside intact human rhinovirus after viral capsid penetration investigated by capillary electrophoresis. Kremser L; Okun VM; Nicodemou A; Blaas D; Kenndler E Anal Chem; 2004 Feb; 76(4):882-7. PubMed ID: 14961716 [TBL] [Abstract][Full Text] [Related]
10. Identification of poliovirions and subviral particles by capillary electrophoresis. Halewyck H; Oita I; Thys B; Dejaegher B; Vander Heyden Y; Rombaut B Electrophoresis; 2010 Oct; 31(19):3281-7. PubMed ID: 22216446 [TBL] [Abstract][Full Text] [Related]
11. Separation and quantification of double- and triple-layered rotavirus-like particles by CZE. Castro-Acosta RM; Revilla AL; Ramírez OT; Palomares LA Electrophoresis; 2010 Apr; 31(8):1376-81. PubMed ID: 20336682 [TBL] [Abstract][Full Text] [Related]
12. Identification and characterization of infectious bursal disease virus subviral particles by capillary zone electrophoresis: potential application for vaccine production and quality control. Hsieh MK; Sung CH; Hsieh PF; Hsiao PF; Wu BY; Chou CC Poult Sci; 2019 Apr; 98(4):1658-1663. PubMed ID: 30481344 [TBL] [Abstract][Full Text] [Related]
13. Virus analysis by electrophoresis on a microfluidic chip. Weiss VU; Kolivoska V; Kremser L; Gas B; Blaas D; Kenndler E J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Dec; 860(2):173-9. PubMed ID: 18006393 [TBL] [Abstract][Full Text] [Related]
14. Behaviors of the MS2 virus and related antibodies in capillary isoelectric focusing with whole-column imaging detection. Liu Z; Pawliszyn J Electrophoresis; 2005 Feb; 26(3):556-62. PubMed ID: 15690457 [TBL] [Abstract][Full Text] [Related]
15. Twelve receptor molecules attach per viral particle of human rhinovirus serotype 2 via multiple modules. Konecsni T; Kremser L; Snyers L; Rankl C; Kilár F; Kenndler E; Blaas D FEBS Lett; 2004 Jun; 568(1-3):99-104. PubMed ID: 15196928 [TBL] [Abstract][Full Text] [Related]
16. Calibrationless quantitative analysis by indirect UV absorbance detection in capillary zone electrophoresis: the concept of the conversion factor. Beckers JL; Bocek P Electrophoresis; 2004 Jan; 25(2):338-43. PubMed ID: 14743486 [TBL] [Abstract][Full Text] [Related]
17. Detection of oxidative damages on viral capsid protein for evaluating structural integrity and infectivity of human norovirus. Sano D; Pintó RM; Omura T; Bosch A Environ Sci Technol; 2010 Jan; 44(2):808-12. PubMed ID: 20000802 [TBL] [Abstract][Full Text] [Related]
18. Nonneutralizing human rhinovirus serotype 2-specific monoclonal antibody 2G2 attaches to the region that undergoes the most dramatic changes upon release of the viral RNA. Hewat EA; Blaas D J Virol; 2006 Dec; 80(24):12398-401. PubMed ID: 17005641 [TBL] [Abstract][Full Text] [Related]
19. Effect of detergent on electromigration of proteins: CE of very low density lipoprotein receptor modules and viral proteins. Kremser L; Bilek G; Kenndler E Electrophoresis; 2007 Oct; 28(20):3684-90. PubMed ID: 17893950 [TBL] [Abstract][Full Text] [Related]
20. Kinetics of thermal denaturation of human rhinoviruses in the presence of anti-viral capsid binders analyzed by capillary electrophoresis. Okun VM; Nizet S; Blaas D; Kenndler E Electrophoresis; 2002 Mar; 23(6):896-902. PubMed ID: 11920874 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]