These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 17623838)
1. Functional and structural characterization of the catalytic domain of the starch synthase III from Arabidopsis thaliana. Busi MV; Palopoli N; Valdez HA; Fornasari MS; Wayllace NZ; Gomez-Casati DF; Parisi G; Ugalde RA Proteins; 2008 Jan; 70(1):31-40. PubMed ID: 17623838 [TBL] [Abstract][Full Text] [Related]
2. Role of the N-terminal starch-binding domains in the kinetic properties of starch synthase III from Arabidopsis thaliana. Valdez HA; Busi MV; Wayllace NZ; Parisi G; Ugalde RA; Gomez-Casati DF Biochemistry; 2008 Mar; 47(9):3026-32. PubMed ID: 18260645 [TBL] [Abstract][Full Text] [Related]
3. The starch-binding capacity of the noncatalytic SBD2 region and the interaction between the N- and C-terminal domains are involved in the modulation of the activity of starch synthase III from Arabidopsis thaliana. Wayllace NZ; Valdez HA; Ugalde RA; Busi MV; Gomez-Casati DF FEBS J; 2010 Jan; 277(2):428-40. PubMed ID: 19968859 [TBL] [Abstract][Full Text] [Related]
4. Starch-synthase III family encodes a tandem of three starch-binding domains. Palopoli N; Busi MV; Fornasari MS; Gomez-Casati D; Ugalde R; Parisi G Proteins; 2006 Oct; 65(1):27-31. PubMed ID: 16862594 [TBL] [Abstract][Full Text] [Related]
6. Improving the glycosyltransferase activity of Agrobacterium tumefaciens glycogen synthase by fusion of N-terminal starch binding domains (SBDs). Martín M; Wayllace NZ; Valdez HA; Gomez-Casati DF; Busi MV Biochimie; 2013 Oct; 95(10):1865-70. PubMed ID: 23796574 [TBL] [Abstract][Full Text] [Related]
7. Overlapping functions of the starch synthases SSII and SSIII in amylopectin biosynthesis in Arabidopsis. Zhang X; Szydlowski N; Delvallé D; D'Hulst C; James MG; Myers AM BMC Plant Biol; 2008 Sep; 8():96. PubMed ID: 18811962 [TBL] [Abstract][Full Text] [Related]
8. Enzymatic characterization of starch synthase III from kidney bean (Phaseolus vulgaris L.). Senoura T; Asao A; Takashima Y; Isono N; Hamada S; Ito H; Matsui H FEBS J; 2007 Sep; 274(17):4550-60. PubMed ID: 17681016 [TBL] [Abstract][Full Text] [Related]
9. Identification of a novel starch synthase III from the picoalgae Ostreococcus tauri. Barchiesi J; Hedin N; Iglesias AA; Gomez-Casati DF; Ballicora MA; Busi MV Biochimie; 2017 Feb; 133():37-44. PubMed ID: 28003125 [TBL] [Abstract][Full Text] [Related]
10. Soluble starch synthase I: a major determinant for the synthesis of amylopectin in Arabidopsis thaliana leaves. Delvallé D; Dumez S; Wattebled F; Roldán I; Planchot V; Berbezy P; Colonna P; Vyas D; Chatterjee M; Ball S; Mérida A; D'Hulst C Plant J; 2005 Aug; 43(3):398-412. PubMed ID: 16045475 [TBL] [Abstract][Full Text] [Related]
11. The structure and expression of the wheat starch synthase III gene. Motifs in the expressed gene define the lineage of the starch synthase III gene family. Li Z; Mouille G; Kosar-Hashemi B; Rahman S; Clarke B; Gale KR; Appels R; Morell MK Plant Physiol; 2000 Jun; 123(2):613-24. PubMed ID: 10859191 [TBL] [Abstract][Full Text] [Related]
12. Conservation and divergence of Starch Synthase III genes of monocots and dicots. Mishra BP; Kumar R; Mohan A; Gill KS PLoS One; 2017; 12(12):e0189303. PubMed ID: 29240782 [TBL] [Abstract][Full Text] [Related]
13. Evolution of vitamin B2 biosynthesis: riboflavin synthase of Arabidopsis thaliana and its inhibition by riboflavin. Fischer M; Haase I; Feicht R; Schramek N; Köhler P; Schieberle P; Bacher A Biol Chem; 2005 May; 386(5):417-28. PubMed ID: 15927885 [TBL] [Abstract][Full Text] [Related]
14. De novo synthesis of bacterial glycogen: Agrobacterium tumefaciens glycogen synthase is involved in glucan initiation and elongation. Ugalde JE; Parodi AJ; Ugalde RA Proc Natl Acad Sci U S A; 2003 Sep; 100(19):10659-63. PubMed ID: 12960388 [TBL] [Abstract][Full Text] [Related]
15. Identification and characterization of the Arabidopsis gene encoding the tetrapyrrole biosynthesis enzyme uroporphyrinogen III synthase. Tan FC; Cheng Q; Saha K; Heinemann IU; Jahn M; Jahn D; Smith AG Biochem J; 2008 Mar; 410(2):291-9. PubMed ID: 18042043 [TBL] [Abstract][Full Text] [Related]
16. Mutational analysis of the AtNUDT7 Nudix hydrolase from Arabidopsis thaliana reveals residues required for protein quaternary structure formation and activity. Olejnik K; Płochocka D; Grynberg M; Goch G; Gruszecki WI; Basińska T; Kraszewska E Acta Biochim Pol; 2009; 56(2):291-300. PubMed ID: 19448856 [TBL] [Abstract][Full Text] [Related]
17. A chloroplast-localized dual-specificity protein phosphatase in Arabidopsis contains a phylogenetically dispersed and ancient carbohydrate-binding domain, which binds the polysaccharide starch. Kerk D; Conley TR; Rodriguez FA; Tran HT; Nimick M; Muench DG; Moorhead GB Plant J; 2006 May; 46(3):400-13. PubMed ID: 16623901 [TBL] [Abstract][Full Text] [Related]
18. Microbial volatile-induced accumulation of exceptionally high levels of starch in Arabidopsis leaves is a process involving NTRC and starch synthase classes III and IV. Li J; Ezquer I; Bahaji A; Montero M; Ovecka M; Baroja-Fernández E; Muñoz FJ; Mérida A; Almagro G; Hidalgo M; Sesma MT; Pozueta-Romero J Mol Plant Microbe Interact; 2011 Oct; 24(10):1165-78. PubMed ID: 21649509 [TBL] [Abstract][Full Text] [Related]
20. An extra-plastidial alpha-glucan, water dikinase from Arabidopsis phosphorylates amylopectin in vitro and is not necessary for transient starch degradation. Glaring MA; Zygadlo A; Thorneycroft D; Schulz A; Smith SM; Blennow A; Baunsgaard L J Exp Bot; 2007; 58(14):3949-60. PubMed ID: 18024995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]