BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 17623845)

  • 61. The long and short flavodoxins: II. The role of the differentiating loop in apoflavodoxin stability and folding mechanism.
    López-Llano J; Maldonado S; Jain S; Lostao A; Godoy-Ruiz R; Sanchez-Ruiz JM; Cortijo M; Fernández-Recio J; Sancho J
    J Biol Chem; 2004 Nov; 279(45):47184-91. PubMed ID: 15317817
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Crystal structure of the flavin reductase component (HpaC) of 4-hydroxyphenylacetate 3-monooxygenase from Thermus thermophilus HB8: Structural basis for the flavin affinity.
    Kim SH; Hisano T; Iwasaki W; Ebihara A; Miki K
    Proteins; 2008 Feb; 70(3):718-30. PubMed ID: 17729270
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Structural and dynamic information on the complex of Megasphaera elsdenii apoflavodoxin and riboflavin 5'-phosphate. A phosphorus-31 nuclear magnetic resonance study.
    Moonen CT; Müller F
    Biochemistry; 1982 Jan; 21(2):408-14. PubMed ID: 7074025
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Energetics of a hydrogen bond (charged and neutral) and of a cation-pi interaction in apoflavodoxin.
    Fernández-Recio J; Romero A; Sancho J
    J Mol Biol; 1999 Jul; 290(1):319-30. PubMed ID: 10388575
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Structure of stable protein folding intermediates by equilibrium phi-analysis: the apoflavodoxin thermal intermediate.
    Campos LA; Bueno M; Lopez-Llano J; Jiménez MA; Sancho J
    J Mol Biol; 2004 Nov; 344(1):239-55. PubMed ID: 15504414
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Conformational dynamics of Escherichia coli flavodoxins in apo- and holo-states by solution NMR spectroscopy.
    Ye Q; Hu Y; Jin C
    PLoS One; 2014; 9(8):e103936. PubMed ID: 25093851
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Calculating chemically accurate redox potentials for engineered flavoproteins from classical molecular dynamics free energy simulations.
    Sattelle BM; Sutcliffe MJ
    J Phys Chem A; 2008 Dec; 112(50):13053-7. PubMed ID: 18828581
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cofactor assisted gating mechanism in the active site of NADH oxidase from Thermus thermophilus.
    Hritz J; Zoldák G; Sedlák E
    Proteins; 2006 Aug; 64(2):465-76. PubMed ID: 16642502
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Unusual lack of internal mobility and fast overall tumbling in oxidized flavodoxin from Anacystis nidulans.
    Zhang P; Dayie KT; Wagner G
    J Mol Biol; 1997 Sep; 272(3):443-55. PubMed ID: 9325102
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Crystal structure of chorismate synthase: a novel FMN-binding protein fold and functional insights.
    Ahn HJ; Yoon HJ; Lee B; Suh SW
    J Mol Biol; 2004 Feb; 336(4):903-15. PubMed ID: 15095868
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Refined structures of oxidized flavodoxin from Anacystis nidulans.
    Drennan CL; Pattridge KA; Weber CH; Metzger AL; Hoover DM; Ludwig ML
    J Mol Biol; 1999 Dec; 294(3):711-24. PubMed ID: 10610791
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Kinetics and thermodynamics of the binding of riboflavin, riboflavin 5'-phosphate and riboflavin 3',5'-bisphosphate by apoflavodoxins.
    Pueyo JJ; Curley GP; Mayhew SG
    Biochem J; 1996 Feb; 313 ( Pt 3)(Pt 3):855-61. PubMed ID: 8611166
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Structure of bacterial luciferase beta 2 homodimer: implications for flavin binding.
    Tanner JJ; Miller MD; Wilson KS; Tu SC; Krause KL
    Biochemistry; 1997 Jan; 36(4):665-72. PubMed ID: 9020763
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Crystal structure of UbiX, an aromatic acid decarboxylase from the psychrophilic bacterium Colwellia psychrerythraea that undergoes FMN-induced conformational changes.
    Do H; Kim SJ; Lee CW; Kim HW; Park HH; Kim HM; Park H; Park H; Lee JH
    Sci Rep; 2015 Feb; 5():8196. PubMed ID: 25645665
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Hydrogen-1, carbon-13, and nitrogen-15 NMR spectroscopy of Anabaena 7120 flavodoxin: assignment of beta-sheet and flavin binding site resonances and analysis of protein-flavin interactions.
    Stockman BJ; Krezel AM; Markley JL; Leonhardt KG; Straus NA
    Biochemistry; 1990 Oct; 29(41):9600-9. PubMed ID: 2125478
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Concurrent presence of on- and off-pathway folding intermediates of apoflavodoxin at physiological ionic strength.
    Houwman JA; Westphal AH; Visser AJWG; Borst JW; van Mierlo CPM
    Phys Chem Chem Phys; 2018 Mar; 20(10):7059-7072. PubMed ID: 29473921
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Electron-nuclear double resonance and hyperfine sublevel correlation spectroscopic studies of flavodoxin mutants from Anabaena sp. PCC 7119.
    Medina M; Lostao A; Sancho J; Gómez-Moreno C; Cammack R; Alonso PJ; Martínez JI
    Biophys J; 1999 Sep; 77(3):1712-20. PubMed ID: 10465780
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Anabaena apoflavodoxin hydrogen exchange: on the stable exchange core of the alpha/beta(21345) flavodoxin-like family.
    Langdon GM; Jiménez MA; Genzor CG; Maldonado S; Sancho J; Rico M
    Proteins; 2001 Jun; 43(4):476-88. PubMed ID: 11340663
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Cofactor-apoprotein hydrogen bonding in oxidized and fully reduced flavodoxin monitored by trans-hydrogen-bond scalar couplings.
    Löhr F; Yalloway GN; Mayhew SG; Rüterjans H
    Chembiochem; 2004 Nov; 5(11):1523-34. PubMed ID: 15515086
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Streptococcus pneumoniae TIGR4 Flavodoxin: Structural and Biophysical Characterization of a Novel Drug Target.
    Rodríguez-Cárdenas Á; Rojas AL; Conde-Giménez M; Velázquez-Campoy A; Hurtado-Guerrero R; Sancho J
    PLoS One; 2016; 11(9):e0161020. PubMed ID: 27649488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.