These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 17623850)

  • 1. Analysis of zinc-ligand bond lengths in metalloproteins: trends and patterns.
    Tamames B; Sousa SF; Tamames J; Fernandes PA; Ramos MJ
    Proteins; 2007 Nov; 69(3):466-75. PubMed ID: 17623850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Zinc proteome: a tale of stability and functionality.
    Sousa SF; Lopes AB; Fernandes PA; Ramos MJ
    Dalton Trans; 2009 Oct; (38):7946-56. PubMed ID: 19771357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The carboxylate shift in zinc enzymes: a computational study.
    Sousa SF; Fernandes PA; Ramos MJ
    J Am Chem Soc; 2007 Feb; 129(5):1378-85. PubMed ID: 17263422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyses of cobalt-ligand and potassium-ligand bond lengths in metalloproteins: trends and patterns.
    Brás NF; Ribeiro AJ; Oliveira M; Paixão NM; Tamames JA; Fernandes PA; Ramos MJ
    J Mol Model; 2014 Jun; 20(6):2271. PubMed ID: 24850495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative assessment of theoretical methods for the determination of geometrical properties in biological zinc complexes.
    Sousa SF; Fernandes PA; Ramos MJ
    J Phys Chem B; 2007 Aug; 111(30):9146-52. PubMed ID: 17602523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cys(x)His(y)-Zn2+ interactions: thiol vs. thiolate coordination.
    Simonson T; Calimet N
    Proteins; 2002 Oct; 49(1):37-48. PubMed ID: 12211014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-second shell interactions in metal binding sites in proteins: a PDB survey and DFT/CDM calculations.
    Dudev T; Lin YL; Dudev M; Lim C
    J Am Chem Soc; 2003 Mar; 125(10):3168-80. PubMed ID: 12617685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active site structures and the redox properties of blue copper proteins: atomic resolution structure of azurin II and electronic structure calculations of azurin, plastocyanin and stellacyanin.
    Paraskevopoulos K; Sundararajan M; Surendran R; Hough MA; Eady RR; Hillier IH; Hasnain SS
    Dalton Trans; 2006 Jul; (25):3067-76. PubMed ID: 16786065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc coordination spheres in protein structures.
    Laitaoja M; Valjakka J; Jänis J
    Inorg Chem; 2013 Oct; 52(19):10983-91. PubMed ID: 24059258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of the performance of commonly available density functionals in the determination of geometrical parameters for zinc complexes.
    Sousa SF; Carvalho ES; Ferreira DM; Tavares IS; Fernandes PA; Ramos MJ; Gomes JA
    J Comput Chem; 2009 Dec; 30(16):2752-63. PubMed ID: 19399915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zn(ii), Cd(ii) and Pb(ii) complexation with pyridinecarboxylate containing ligands.
    Ferreirós-Martínez R; Esteban-Gómez D; Platas-Iglesias C; de Blas A; Rodríguez-Blas T
    Dalton Trans; 2008 Nov; (42):5754-65. PubMed ID: 18941663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of semiempirical, ab initio, and DFT methods in evaluating metal-ligand bond strength, proton affinity, and interactions between first and second shell ligands in Zn-biomimetic complexes.
    Frison G; Ohanessian G
    J Comput Chem; 2008 Feb; 29(3):416-33. PubMed ID: 17631650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate metal-site structures in proteins obtained by combining experimental data and quantum chemistry.
    Ryde U
    Dalton Trans; 2007 Feb; (6):607-25. PubMed ID: 17268593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational protocol for predicting the binding affinities of zinc containing metalloprotein-ligand complexes.
    Jain T; Jayaram B
    Proteins; 2007 Jun; 67(4):1167-78. PubMed ID: 17380508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QM/MM calculations with DFT for taking into account protein effects on the EPR and optical spectra of metalloproteins. Plastocyanin as a case study.
    Sinnecker S; Neese F
    J Comput Chem; 2006 Sep; 27(12):1463-75. PubMed ID: 16807973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The architecture of metal coordination groups in proteins.
    Harding MM
    Acta Crystallogr D Biol Crystallogr; 2004 May; 60(Pt 5):849-59. PubMed ID: 15103130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergic approach to XAFS analysis for the identification of most probable binding motifs for mononuclear zinc sites in metalloproteins.
    Giachini L; Veronesi G; Francia F; Venturoli G; Boscherini F
    J Synchrotron Radiat; 2010 Jan; 17(1):41-52. PubMed ID: 20029110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deducing the energetic cost of protein folding in zinc finger proteins using designed metallopeptides.
    Reddi AR; Guzman TR; Breece RM; Tierney DL; Gibney BR
    J Am Chem Soc; 2007 Oct; 129(42):12815-27. PubMed ID: 17902663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-ligand interactions: an analysis of zinc binding groups using the Protein Data Bank.
    Kawai K; Nagata N
    Eur J Med Chem; 2012 May; 51():271-6. PubMed ID: 22405284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual screening against metalloenzymes for inhibitors and substrates.
    Irwin JJ; Raushel FM; Shoichet BK
    Biochemistry; 2005 Sep; 44(37):12316-28. PubMed ID: 16156645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.